Composite quantile regression based robust empirical likelihood for partially linear spatial autoregressive models

Pub Date : 2024-07-19 DOI:10.4310/22-sii764
Peixin Zhao, Suli Cheng, Xiaoshuang Zhou
{"title":"Composite quantile regression based robust empirical likelihood for partially linear spatial autoregressive models","authors":"Peixin Zhao, Suli Cheng, Xiaoshuang Zhou","doi":"10.4310/22-sii764","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the robust estimation for a class of partially linear spatial autoregressive models. By combining empirical likelihood and composite quantile regression methods, we propose a robust empirical likelihood estimation procedure. Under some regularity conditions, the proposed empirical log-likelihood ratio is proved to be asymptotically chi-squared, and the convergence rate of the estimator for nonparametric component is also derived. Some simulation analyses are conducted for further illustrating the performance of the proposed method, and simulation results show that the proposed method is more robust.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the robust estimation for a class of partially linear spatial autoregressive models. By combining empirical likelihood and composite quantile regression methods, we propose a robust empirical likelihood estimation procedure. Under some regularity conditions, the proposed empirical log-likelihood ratio is proved to be asymptotically chi-squared, and the convergence rate of the estimator for nonparametric component is also derived. Some simulation analyses are conducted for further illustrating the performance of the proposed method, and simulation results show that the proposed method is more robust.
分享
查看原文
部分线性空间自回归模型的基于稳健经验似然法的复合量化回归
本文考虑对一类部分线性空间自回归模型进行稳健估计。通过结合经验似然法和复合量化回归法,我们提出了一种稳健的经验似然估计程序。在一些规则性条件下,证明了所提出的经验对数似然比是渐近奇平方的,并推导出了非参数成分估计器的收敛率。为了进一步说明所提方法的性能,还进行了一些仿真分析,仿真结果表明所提方法更加稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信