A double regression method for graphical modeling of high-dimensional nonlinear and non-Gaussian data

IF 0.3 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Siqi Liang, Faming Liang
{"title":"A double regression method for graphical modeling of high-dimensional nonlinear and non-Gaussian data","authors":"Siqi Liang, Faming Liang","doi":"10.4310/22-sii756","DOIUrl":null,"url":null,"abstract":"Graphical models have long been studied in statistics as a tool for inferring conditional independence relationships among a large set of random variables. The most existing works in graphical modeling focus on the cases that the data are Gaussian or mixed and the variables are linearly dependent. In this paper, we propose a double regression method for learning graphical models under the high-dimensional nonlinear and non-Gaussian setting, and prove that the proposed method is consistent under mild conditions. The proposed method works by performing a series of nonparametric conditional independence tests. The conditioning set of each test is reduced via a double regression procedure where a model-free sure independence screening procedure or a sparse deep neural network can be employed. The numerical results indicate that the proposed method works well for high-dimensional nonlinear and non-Gaussian data.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"63 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii756","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphical models have long been studied in statistics as a tool for inferring conditional independence relationships among a large set of random variables. The most existing works in graphical modeling focus on the cases that the data are Gaussian or mixed and the variables are linearly dependent. In this paper, we propose a double regression method for learning graphical models under the high-dimensional nonlinear and non-Gaussian setting, and prove that the proposed method is consistent under mild conditions. The proposed method works by performing a series of nonparametric conditional independence tests. The conditioning set of each test is reduced via a double regression procedure where a model-free sure independence screening procedure or a sparse deep neural network can be employed. The numerical results indicate that the proposed method works well for high-dimensional nonlinear and non-Gaussian data.
高维非线性和非高斯数据图形建模的双重回归方法
图形模型作为一种推断大量随机变量之间条件独立性关系的工具,在统计学中研究已久。现有的图形建模研究大多集中在数据为高斯或混合数据以及变量为线性相关变量的情况下。在本文中,我们提出了一种在高维非线性和非高斯环境下学习图形模型的双重回归方法,并证明所提出的方法在温和条件下是一致的。所提出的方法通过执行一系列非参数条件独立性检验来实现。每个检验的条件集通过双重回归程序进行缩减,其中可以使用无模型确定独立性筛选程序或稀疏深度神经网络。数值结果表明,所提出的方法能很好地处理高维非线性和非高斯数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信