Variable selection and estimation for high-dimensional partially linear spatial autoregressive models with measurement errors

Pub Date : 2024-07-19 DOI:10.4310/22-sii758
Zhensheng Huang, Shuyu Meng, Linlin Zhang
{"title":"Variable selection and estimation for high-dimensional partially linear spatial autoregressive models with measurement errors","authors":"Zhensheng Huang, Shuyu Meng, Linlin Zhang","doi":"10.4310/22-sii758","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a class of corrected post-model selection estimation method to identify important explanatory variables in parametric component of high-dimensional partially linear spatial autoregressive model with measurement errors. Compared with existing methods, the proposed method adds a new process of re-estimating the selected model parameters after model selection. We show that the post-model selection estimator performs at least as well as the Lasso penalty estimator by establishing some theorems of model selection and estimation properties. Extensive simulation studies not only evaluate the finite sample performance of the proposed method, but also show the superiority of the proposed method over other methods. As an empirical illustration, we apply the proposed model and method to two real data sets.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a class of corrected post-model selection estimation method to identify important explanatory variables in parametric component of high-dimensional partially linear spatial autoregressive model with measurement errors. Compared with existing methods, the proposed method adds a new process of re-estimating the selected model parameters after model selection. We show that the post-model selection estimator performs at least as well as the Lasso penalty estimator by establishing some theorems of model selection and estimation properties. Extensive simulation studies not only evaluate the finite sample performance of the proposed method, but also show the superiority of the proposed method over other methods. As an empirical illustration, we apply the proposed model and method to two real data sets.
分享
查看原文
具有测量误差的高维部分线性空间自回归模型的变量选择和估计
本文开发了一类修正后模型选择估计方法,用于识别具有测量误差的高维部分线性空间自回归模型参数部分的重要解释变量。与现有方法相比,本文提出的方法增加了在模型选择后重新估计所选模型参数的新过程。通过建立模型选择和估计特性的一些定理,我们证明了模型选择后估计器的性能至少与 Lasso 惩罚估计器相当。广泛的仿真研究不仅评估了所提方法的有限样本性能,而且表明了所提方法优于其他方法。作为实证说明,我们将提出的模型和方法应用于两个真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信