Maaneli Derakhshani, Michael K.-H. Kiessling, A. Shadi Tahvildar-Zadeh
{"title":"Covariant guiding laws for fields","authors":"Maaneli Derakhshani, Michael K.-H. Kiessling, A. Shadi Tahvildar-Zadeh","doi":"10.4310/pamq.2024.v20.n4.a13","DOIUrl":null,"url":null,"abstract":"After reviewing the passage from classical Hamilton–Jacobi formulation of non-relativistic point-particle dynamics to the non-relativistic quantum dynamics of point particles whose motion is guided by a wave function that satisfies Schrödinger’s or Pauli’s equation, we study the analogous question for the Lorentz-covariant dynamics of fields on spacelike slices of spacetime. We establish a relationship, between the DeDonder–Weyl–Christodoulou formulation of covariant Hamilton–Jacobi equations for the classical field evolution, and the Lorentz-covariant Dirac-type wave equation proposed by Kanatchikov amended by our proposed guiding equation for such fields. We show that Kanatchikov’s equation is well-posed and generally solvable, and we establish the correspondence between plane-wave solutions of Kanatchikov’s equation and solutions of the covariant Hamilton–Jacobi equations ofDeDonder–Weyl–Christodoulou. We propose a covariant guiding law for the temporal evolution of fields defined on constant time slices of spacetime, and show that it yields, at each spacetime point, the existence of a finite measure on the space of field values at that point that is equivariant with respect to the flow induced by the solution of Kanatchikov’s equation that is guiding the actual field, so long as it is a plane-wave solution. We show that our guiding law is local in the sense of Einstein’s special relativity, and therefore it cannot be used to analyze Bell-type experiments. We conclude by suggesting directions to be explored in future research.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n4.a13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
After reviewing the passage from classical Hamilton–Jacobi formulation of non-relativistic point-particle dynamics to the non-relativistic quantum dynamics of point particles whose motion is guided by a wave function that satisfies Schrödinger’s or Pauli’s equation, we study the analogous question for the Lorentz-covariant dynamics of fields on spacelike slices of spacetime. We establish a relationship, between the DeDonder–Weyl–Christodoulou formulation of covariant Hamilton–Jacobi equations for the classical field evolution, and the Lorentz-covariant Dirac-type wave equation proposed by Kanatchikov amended by our proposed guiding equation for such fields. We show that Kanatchikov’s equation is well-posed and generally solvable, and we establish the correspondence between plane-wave solutions of Kanatchikov’s equation and solutions of the covariant Hamilton–Jacobi equations ofDeDonder–Weyl–Christodoulou. We propose a covariant guiding law for the temporal evolution of fields defined on constant time slices of spacetime, and show that it yields, at each spacetime point, the existence of a finite measure on the space of field values at that point that is equivariant with respect to the flow induced by the solution of Kanatchikov’s equation that is guiding the actual field, so long as it is a plane-wave solution. We show that our guiding law is local in the sense of Einstein’s special relativity, and therefore it cannot be used to analyze Bell-type experiments. We conclude by suggesting directions to be explored in future research.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.