Gravitational solitons and complete Ricci flat Riemannian manifolds of infinite topological type

IF 0.5 4区 数学 Q3 MATHEMATICS
Marcus Khuri, Martin Reiris, Gilbert Weinstein, Sumio Yamada
{"title":"Gravitational solitons and complete Ricci flat Riemannian manifolds of infinite topological type","authors":"Marcus Khuri, Martin Reiris, Gilbert Weinstein, Sumio Yamada","doi":"10.4310/pamq.2024.v20.n4.a12","DOIUrl":null,"url":null,"abstract":"We present several new space-periodic solutions of the static vacuum Einstein equations in higher dimensions, both with and without black holes, having Kasner asymptotics. These latter solutions are referred to as gravitational solitons. Further partially compactified solutions are also obtained by taking appropriate quotients, and the topologies are computed explicitly in terms of connected sums of products of spheres. In addition, it is shown that there is a correspondence, via Wick rotation, between the spacelike slices of the solitons and black hole solutions in one dimension less. As a corollary, the solitons give rise to complete Ricci flat Riemannian manifolds of infinite topological type and generic holonomy, in dimensions $4$ and higher.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n4.a12","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present several new space-periodic solutions of the static vacuum Einstein equations in higher dimensions, both with and without black holes, having Kasner asymptotics. These latter solutions are referred to as gravitational solitons. Further partially compactified solutions are also obtained by taking appropriate quotients, and the topologies are computed explicitly in terms of connected sums of products of spheres. In addition, it is shown that there is a correspondence, via Wick rotation, between the spacelike slices of the solitons and black hole solutions in one dimension less. As a corollary, the solitons give rise to complete Ricci flat Riemannian manifolds of infinite topological type and generic holonomy, in dimensions $4$ and higher.
引力孤子与无限拓扑类型的完整里奇平坦黎曼流形
我们提出了高维度静态真空爱因斯坦方程的几种新的空间周期解,包括有黑洞和无黑洞的解,它们都具有卡斯纳渐近线。后一种解被称为引力孤子。通过取适当的商,还得到了进一步的部分紧凑解,并以球体乘积的连通和明确计算了拓扑结构。此外,研究还表明,通过威克旋转,孤子的空间似切片与黑洞解之间存在一维以下的对应关系。作为推论,孤子会在 4$ 或更高维度中产生具有无限拓扑类型和泛函整体性的完整里奇平坦黎曼流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信