Radiation and Asymptotics for Spacetimes with Non-Isotropic Mass

IF 0.5 4区 数学 Q3 MATHEMATICS
Lydia Bieri
{"title":"Radiation and Asymptotics for Spacetimes with Non-Isotropic Mass","authors":"Lydia Bieri","doi":"10.4310/pamq.2024.v20.n4.a4","DOIUrl":null,"url":null,"abstract":"We derive new results on radiation, angular momentum at future null infinity and peeling for a general class of spacetimes. For asymptotically-flat solutions of the Einstein vacuum equations with a term homogeneous of degree $-1$ in the initial data metric, that is it may include a non-isotropic mass term, we prove new detailed behavior of the radiation field and curvature components at future null infinity. In particular, the limit along the null hypersurface $C_u$ as $t \\to \\infty$ of the curvature component $\\rho =\\frac{1}{4}{R_{3434}}$ multiplied with $r^3$ tends to a function $P(u, \\theta, \\phi)$ on $\\mathbb{R} \\times S^2$. When taking the limit $u \\rightarrow + \\infty$ (which corresponds to the limit at spacelike infinity), this function tends to a function $P^+(\\theta, \\phi)$ on $S^2$. We prove that the latter limit does not have any $l=1$ modes. However, it has all the other modes, $l = 0, l \\geq 2$. Important derivatives of crucial curvature components do not decay in $u$, which is a special feature of these more general spacetimes We show that peeling of the Weyl curvature components at future null infinity stops at the order $r^{-3}$, that is $(r^{-4}|u|^{+1}$, for large data, and at order $r^{-\\frac{7}{2}}$ for small data. Despite this fact, we prove that angular momentum at future null infinity is well defined for these spacetimes, due to the good behavior of the $l=1$ modes involved.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"71 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n4.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We derive new results on radiation, angular momentum at future null infinity and peeling for a general class of spacetimes. For asymptotically-flat solutions of the Einstein vacuum equations with a term homogeneous of degree $-1$ in the initial data metric, that is it may include a non-isotropic mass term, we prove new detailed behavior of the radiation field and curvature components at future null infinity. In particular, the limit along the null hypersurface $C_u$ as $t \to \infty$ of the curvature component $\rho =\frac{1}{4}{R_{3434}}$ multiplied with $r^3$ tends to a function $P(u, \theta, \phi)$ on $\mathbb{R} \times S^2$. When taking the limit $u \rightarrow + \infty$ (which corresponds to the limit at spacelike infinity), this function tends to a function $P^+(\theta, \phi)$ on $S^2$. We prove that the latter limit does not have any $l=1$ modes. However, it has all the other modes, $l = 0, l \geq 2$. Important derivatives of crucial curvature components do not decay in $u$, which is a special feature of these more general spacetimes We show that peeling of the Weyl curvature components at future null infinity stops at the order $r^{-3}$, that is $(r^{-4}|u|^{+1}$, for large data, and at order $r^{-\frac{7}{2}}$ for small data. Despite this fact, we prove that angular momentum at future null infinity is well defined for these spacetimes, due to the good behavior of the $l=1$ modes involved.
具有非各向同性质量的时空的辐射和渐近性
我们推导出了关于辐射、未来空无穷远处的角动量以及一般空间的剥离的新结果。对于爱因斯坦真空方程的渐近平直解,其初始数据度量中有一个度数为 $-1$ 的同质项,即可能包括一个非各向同性的质量项,我们证明了辐射场和曲率分量在未来空无穷远处的新的详细行为。特别是,当曲率分量$\rho =\frac{1}{4}{R_{3434}}$ 乘以$r^3$时,沿着空超表面$C_u$的极限在$t \to \infty$上趋于函数$P(u, \theta,\phi)$ on $\mathbb{R} \times S^2$。当取极限 $u \rightarrow + \infty$(对应于空间无穷大处的极限)时,这个函数趋向于 $S^2$ 上的函数 $P^+(\theta,\phi)$。我们证明后一极限不具有任何 $l=1$ 模式。然而,它具有所有其他模式,即 $l = 0, l \geq 2$。关键曲率分量的重要导数不在$u$中衰减,这是这些更一般的时空的一个特殊特征。我们证明,对于大数据,韦尔曲率分量在未来空无穷大处的剥离在$r^{-3}$阶停止,即$(r^{-4}|u|^{+1}$,而对于小数据,则在$r^{-\frac{7}{2}}阶停止。尽管如此,我们还是证明,由于所涉及的 $l=1$ 模式行为良好,这些时空在未来空无穷大处的角动量定义良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信