Derivation of the half-wave maps equation from Calogero–Moser spin systems

IF 0.5 4区 数学 Q3 MATHEMATICS
Enno Lenzmann, Jérémy Sok
{"title":"Derivation of the half-wave maps equation from Calogero–Moser spin systems","authors":"Enno Lenzmann, Jérémy Sok","doi":"10.4310/pamq.2024.v20.n4.a10","DOIUrl":null,"url":null,"abstract":"We prove that the energy-critical half-wave maps equation\\[$\\partial_t \\mathbf {S} = \\mathbf {S} \\times |\\nabla |\\mathbf {S}, \\quad (\\mathit{t}, \\mathit{x}) \\in \\mathbb R \\times \\mathbb T$\\]arises as an effective equation in the continuum limit of completely integrable Calogero–Moser classical spin systems with inverse square $1/r^2$ interactions on the circle. We study both the convergence to global-in-time weak solutions in the energy class as well as short-time strong solutions of higher regularity. The proofs are based on Fourier methods and suitable discrete analogues of fractional Leibniz rules and Kato–Ponce–Vega commutator estimates.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"48 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n4.a10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the energy-critical half-wave maps equation\[$\partial_t \mathbf {S} = \mathbf {S} \times |\nabla |\mathbf {S}, \quad (\mathit{t}, \mathit{x}) \in \mathbb R \times \mathbb T$\]arises as an effective equation in the continuum limit of completely integrable Calogero–Moser classical spin systems with inverse square $1/r^2$ interactions on the circle. We study both the convergence to global-in-time weak solutions in the energy class as well as short-time strong solutions of higher regularity. The proofs are based on Fourier methods and suitable discrete analogues of fractional Leibniz rules and Kato–Ponce–Vega commutator estimates.
从卡洛吉罗-莫泽自旋系统推导半波图方程
我们证明了能量临界半波映射方程([$\partial_t \mathbf {S} = \mathbf {S} \times |\nabla |\mathbf {S}, \quad (\mathit{t}、\in \mathbb R \times \mathbb T$\]作为完全可积分的卡洛吉罗-莫泽经典自旋系统连续极限中的有效方程出现,该系统在圆上具有反平方 1/r^2$ 的相互作用。我们既研究了能量类中全局时间弱解的收敛性,也研究了更高正则性的短时间强解。证明基于傅里叶方法和分数莱布尼兹规则的合适离散类似物以及 Kato-Ponce-Vega 换向器估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信