Semi-global controllability of a geometric wave equation

IF 0.5 4区 数学 Q3 MATHEMATICS
Joachim Krieger, Shengquan Xiang
{"title":"Semi-global controllability of a geometric wave equation","authors":"Joachim Krieger, Shengquan Xiang","doi":"10.4310/pamq.2024.v20.n4.a9","DOIUrl":null,"url":null,"abstract":"We prove the semi-global controllability and stabilization of the $(1 + 1)$-dimensional wave maps equation with spatial domain $\\mathbb{S}^1$ and target $\\mathbb{S}^k$. First, we show that damping stabilizes the system when the energy is strictly below the threshold $2\\pi$, where harmonic maps appear as obstruction for global stabilization. Then, we adapt an iterative control procedure to get low-energy exact controllability of the wave maps equation. This result is optimal in the case $k = 1$.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n4.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the semi-global controllability and stabilization of the $(1 + 1)$-dimensional wave maps equation with spatial domain $\mathbb{S}^1$ and target $\mathbb{S}^k$. First, we show that damping stabilizes the system when the energy is strictly below the threshold $2\pi$, where harmonic maps appear as obstruction for global stabilization. Then, we adapt an iterative control procedure to get low-energy exact controllability of the wave maps equation. This result is optimal in the case $k = 1$.
几何波方程的半全局可控性
我们证明了空间域为$\mathbb{S}^1$、目标为$\mathbb{S}^k$的$(1 + 1)$维波图方程的半全局可控性和稳定性。首先,我们证明当能量严格低于阈值 $2\pi$ 时,阻尼会使系统趋于稳定,此时谐波图会成为全局稳定的障碍。然后,我们采用迭代控制程序来获得波映射方程的低能量精确可控性。这一结果在 $k = 1$ 的情况下是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信