Zafer Kandemir, Pino D'Amico, Giacomo Sesti, Claudia Cardoso, Milorad V. Milošević, Cem Sevik
{"title":"Optical properties of metallic MXene multilayers through advanced first-principles calculations","authors":"Zafer Kandemir, Pino D'Amico, Giacomo Sesti, Claudia Cardoso, Milorad V. Milošević, Cem Sevik","doi":"10.1103/physrevmaterials.8.075201","DOIUrl":null,"url":null,"abstract":"Having a strong electromagnetic absorption, MXene multilayers are readily envisaged for applications in electromagnetic shields and related prospective technology. However, an <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"italic\">ab</mi></mrow></math> <i>initio</i> characterization of the optical properties of MXenes is still lacking, due in part to major difficulties with the treatment of metallicity in the first-principles approaches. Here we addressed the latter challenge, after a careful treatment of intraband transitions, to present a thorough analysis of the electronic and optical properties of a selected set of metallic MXene layers based on density functional theory (DFT) and many-body perturbation theory calculations. Our results reveal that the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"italic\">GW</mi></mrow></math> corrections are particularly important in regions of the band structure where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"italic\">d</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"italic\">p</mi></math> states hybridize. For some systems, we show that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"italic\">GW</mi></mrow></math> corrections open a gap between occupied states, resulting in a band structure that closely resembles that of an intrinsic transparent conductor, thereby opening an additional line of prospective applications for the MXenes family. Nevertheless, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"italic\">GW</mi></mrow></math> and Bethe-Salpeter corrections have a minimal influence on the absorption spectra, in contrast to what is typically observed in semiconductor layers. Our present results suggest that calculations within the independent particle approximation (IPA) calculations are sufficiently accurate for assessing the optical characteristics of bulk-layered MXene materials. Finally, our calculated dielectric properties and absorption spectra, in agreement with existing experimental data, confirm the potential of MXenes as effective infrared emitters.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"33 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.075201","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Having a strong electromagnetic absorption, MXene multilayers are readily envisaged for applications in electromagnetic shields and related prospective technology. However, an initio characterization of the optical properties of MXenes is still lacking, due in part to major difficulties with the treatment of metallicity in the first-principles approaches. Here we addressed the latter challenge, after a careful treatment of intraband transitions, to present a thorough analysis of the electronic and optical properties of a selected set of metallic MXene layers based on density functional theory (DFT) and many-body perturbation theory calculations. Our results reveal that the corrections are particularly important in regions of the band structure where and states hybridize. For some systems, we show that corrections open a gap between occupied states, resulting in a band structure that closely resembles that of an intrinsic transparent conductor, thereby opening an additional line of prospective applications for the MXenes family. Nevertheless, and Bethe-Salpeter corrections have a minimal influence on the absorption spectra, in contrast to what is typically observed in semiconductor layers. Our present results suggest that calculations within the independent particle approximation (IPA) calculations are sufficiently accurate for assessing the optical characteristics of bulk-layered MXene materials. Finally, our calculated dielectric properties and absorption spectra, in agreement with existing experimental data, confirm the potential of MXenes as effective infrared emitters.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.