{"title":"Transverse Lyapunov Exponent and Chimeras in Globally Coupled Maps","authors":"Théophile Caby, Pierre Guiraud","doi":"10.1137/23m1603339","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1946-1965, September 2024. <br/> Abstract.We study the stability properties and the long-term dynamics of chimeras in systems of globally coupled maps. In particular, we establish a formula for the transverse Lyapunov exponent of the states of the system containing synchronized units. We use this formula to present numerical evidence of attracting chimeras having chaotic dynamics as well as periodic behaviors. We also show that, at least for polynomial local maps, attracting periodic cycles tend to belong to cluster spaces, and, more generally, limit sets of chimera orbits have zero Lebesgue measure for strong coupling regimes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1603339","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1946-1965, September 2024. Abstract.We study the stability properties and the long-term dynamics of chimeras in systems of globally coupled maps. In particular, we establish a formula for the transverse Lyapunov exponent of the states of the system containing synchronized units. We use this formula to present numerical evidence of attracting chimeras having chaotic dynamics as well as periodic behaviors. We also show that, at least for polynomial local maps, attracting periodic cycles tend to belong to cluster spaces, and, more generally, limit sets of chimera orbits have zero Lebesgue measure for strong coupling regimes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.