The super edge-connectivity of direct product of a graph and a cycle

Sijia Guo, Xiaomin Hu, Weihua Yang, Shuang Zhao
{"title":"The super edge-connectivity of direct product of a graph and a cycle","authors":"Sijia Guo, Xiaomin Hu, Weihua Yang, Shuang Zhao","doi":"10.1007/s11227-024-06352-x","DOIUrl":null,"url":null,"abstract":"<p>The super edge-connectivity of a connected graph <i>G</i>, denoted by <span>\\({\\lambda }'\\left( G \\right) \\)</span>, if exists, is the minimum number of edges whose deletion disconnects the graph such that each component has no isolated vertices. The direct product of graphs <i>G</i> and <i>H</i>, denoted by <span>\\(G\\times H\\)</span>, is the graph with vertex set <span>\\(V\\left( G\\times H \\right) =V\\left( G \\right) \\times V\\left( H \\right) \\)</span>, where two vertices <span>\\(\\left( {{u}_{1}},{{v}_{1}} \\right) \\)</span> and <span>\\(\\left( {{u}_{2}},{{v}_{2}} \\right) \\)</span> are adjacent in <span>\\(G\\times H\\)</span> if and only if <span>\\({{u}_{1}}{{u}_{2}}\\in E\\left( G \\right) \\)</span> and <span>\\({{v}_{1}}{{v}_{2}}\\in E\\left( H \\right) \\)</span>. In this paper, it is proved that <span>\\({\\lambda }'\\left( G\\times {{C}_{n}} \\right) = \\min \\{ 2n{\\lambda }'\\left( G \\right) ,2\\underset{xy\\in E\\left( G \\right) }{{\\min }}\\,\\left( {{\\deg }_{G}}\\left( x \\right) +{{\\deg }_{G}}\\left( y \\right) \\right) -2 \\}\\)</span> for (i) any connected graph <i>G</i> with <span>\\(\\left| G \\right| \\le n\\)</span> or <span>\\(\\Delta \\left( G \\right) \\le n-1\\)</span> and an odd cycle <span>\\({{C}_{n}}\\)</span>, or (ii) any split graph <i>G</i> with <span>\\(\\left| G \\right| \\le n\\)</span> or <span>\\(\\Delta \\left( G \\right) \\le n-1\\)</span> and a cycle <span>\\({{C}_{n}}\\)</span>.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06352-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The super edge-connectivity of a connected graph G, denoted by \({\lambda }'\left( G \right) \), if exists, is the minimum number of edges whose deletion disconnects the graph such that each component has no isolated vertices. The direct product of graphs G and H, denoted by \(G\times H\), is the graph with vertex set \(V\left( G\times H \right) =V\left( G \right) \times V\left( H \right) \), where two vertices \(\left( {{u}_{1}},{{v}_{1}} \right) \) and \(\left( {{u}_{2}},{{v}_{2}} \right) \) are adjacent in \(G\times H\) if and only if \({{u}_{1}}{{u}_{2}}\in E\left( G \right) \) and \({{v}_{1}}{{v}_{2}}\in E\left( H \right) \). In this paper, it is proved that \({\lambda }'\left( G\times {{C}_{n}} \right) = \min \{ 2n{\lambda }'\left( G \right) ,2\underset{xy\in E\left( G \right) }{{\min }}\,\left( {{\deg }_{G}}\left( x \right) +{{\deg }_{G}}\left( y \right) \right) -2 \}\) for (i) any connected graph G with \(\left| G \right| \le n\) or \(\Delta \left( G \right) \le n-1\) and an odd cycle \({{C}_{n}}\), or (ii) any split graph G with \(\left| G \right| \le n\) or \(\Delta \left( G \right) \le n-1\) and a cycle \({{C}_{n}}\).

Abstract Image

图与循环直接乘积的超边连接性
如果存在连通图 G 的超边连通性,用 \({\lambda }'\left( G \right) \)来表示,它是删除使图断开连接的边的最小数目,这样每个部分就没有孤立顶点了。图 G 和 H 的直积,用 \(G\times H\) 表示,是顶点集为 \(V\left( G\times H\right) =V\left( G\right) \times V\left( H\right) \) 的图,其中两个顶点 \(\left( {{u}_{1}}、{{v}_{1}} 右)和({{u}_{2}}、{当且仅当({{u}_{1}}{{u}_{2}}\in Eleft( G \right) \)和({{v}_{1}}{{v}_{2}}\in Eleft( H \right) \)在 \(G\times H\) 中相邻。本文证明了({\lambda }'\left( G\times {{C}_{n}} \right) = \min \{ 2n{lambda }'\left( G\right) ,2\underset{xy\in E\left( G\right) }{{\min }})、\left( {{\deg }_{G}}\left( x \right) +{{\deg }_{G}}\left( y \right) \right) -2 \}\) for (i) any connected graph G with \(\left| G \right| \le n\) or \(\Delta \left( G \right) \le n-1\) and an odd cycle \({{C}_{n}}\)、或 (ii) 任何分裂图 G,具有 \(\left| G \right| \le n\) 或 \(\Delta \left( G \right) \le n-1\) 和一个循环 \({{C}_{n}}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信