Hybrid similarity measure-based image indexing and Gradient Ladybug Beetle optimization for retrieval of brain tumor using MRI

Dhanya K. Sudhish, Latha R. Nair, Shailesh Sivan
{"title":"Hybrid similarity measure-based image indexing and Gradient Ladybug Beetle optimization for retrieval of brain tumor using MRI","authors":"Dhanya K. Sudhish, Latha R. Nair, Shailesh Sivan","doi":"10.1007/s11227-024-06350-z","DOIUrl":null,"url":null,"abstract":"<p>Clinical images of brain tumors (BT) are crucial in the diagnostic process and contain substantial medical information. In neurosurgery and neurology, AI’s application in retrieving and analyzing brain tumors leads to earlier, more accurate diagnoses and improves treatment planning. However, the accuracy of the existing methods for the physical retrieval of similar images needs to be improved. This paper introduces Gradient Ladybug Beetle Optimization-based LeNet (GLBO-LeNet) for the retrieval of brain tumor magnetic resonance images (MRI) from the medical datasets. This approach processes both input MRI images and query MRIs using the same pipeline. Tumor segmentation process is performed on these images using a 3D Convolutional Neural Network (CNN). Features are extracted from segmented images, incorporating a novel feature extraction method, LTDP based on Discrete Wavelet Transform (DWT) with Pyramid Histogram of Orientation (PHoG). The extracted features are utilized for tumor classification using LeNet-5, tuned by Gradient Ladybug Beetle Optimization (GLBO). The classified outputs from input MRI images are indexed in an image database. Similar images are retrieved and ranked using a proposed hybrid similarity measure, enabling efficient brain MRI image retrieval. In this study, the GLBO-LeNet-based brain tumor MRI retrieval system achieved an accuracy of 91.5%, a Prue-positive rate (TPR) of 91.9%, a True-negative rate (TNR) of 92.5%, a Positive predictive value (PPV) of 90.8% and a Negative predictive value (NPV) of 89.4%.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06350-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical images of brain tumors (BT) are crucial in the diagnostic process and contain substantial medical information. In neurosurgery and neurology, AI’s application in retrieving and analyzing brain tumors leads to earlier, more accurate diagnoses and improves treatment planning. However, the accuracy of the existing methods for the physical retrieval of similar images needs to be improved. This paper introduces Gradient Ladybug Beetle Optimization-based LeNet (GLBO-LeNet) for the retrieval of brain tumor magnetic resonance images (MRI) from the medical datasets. This approach processes both input MRI images and query MRIs using the same pipeline. Tumor segmentation process is performed on these images using a 3D Convolutional Neural Network (CNN). Features are extracted from segmented images, incorporating a novel feature extraction method, LTDP based on Discrete Wavelet Transform (DWT) with Pyramid Histogram of Orientation (PHoG). The extracted features are utilized for tumor classification using LeNet-5, tuned by Gradient Ladybug Beetle Optimization (GLBO). The classified outputs from input MRI images are indexed in an image database. Similar images are retrieved and ranked using a proposed hybrid similarity measure, enabling efficient brain MRI image retrieval. In this study, the GLBO-LeNet-based brain tumor MRI retrieval system achieved an accuracy of 91.5%, a Prue-positive rate (TPR) of 91.9%, a True-negative rate (TNR) of 92.5%, a Positive predictive value (PPV) of 90.8% and a Negative predictive value (NPV) of 89.4%.

Abstract Image

基于相似度量的混合图像索引和梯度瓢虫优化技术用于利用核磁共振成像检索脑肿瘤
脑肿瘤(BT)的临床图像在诊断过程中至关重要,其中包含大量医学信息。在神经外科和神经内科中,人工智能在脑肿瘤检索和分析中的应用可使诊断更早、更准确,并改善治疗计划。然而,现有的相似图像物理检索方法的准确性有待提高。本文介绍了基于梯度瓢虫甲虫优化的 LeNet(GLBO-LeNet),用于从医疗数据集中检索脑肿瘤磁共振图像(MRI)。该方法使用相同的管道处理输入的磁共振图像和查询的磁共振图像。使用三维卷积神经网络(CNN)对这些图像进行肿瘤分割处理。从分割后的图像中提取特征,采用一种新颖的特征提取方法,即基于离散小波变换(DWT)和金字塔方位直方图(PHoG)的 LTDP。通过梯度瓢虫优化(GLBO)调整的 LeNet-5 将提取的特征用于肿瘤分类。输入核磁共振图像的分类输出被索引到图像数据库中。使用所提出的混合相似度量对相似图像进行检索和排序,从而实现高效的脑部核磁共振图像检索。在这项研究中,基于 GLBO-LeNet 的脑肿瘤 MRI 检索系统的准确率达到 91.5%,阳性率 (TPR) 为 91.9%,阴性率 (TNR) 为 92.5%,阳性预测值 (PPV) 为 90.8%,阴性预测值 (NPV) 为 89.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信