Bingchen Liu, Huang Peng, Weixin Zeng, Xiang Zhao, Shijun Liu, Li Pan, Xin Li
{"title":"Open knowledge base canonicalization with multi-task learning","authors":"Bingchen Liu, Huang Peng, Weixin Zeng, Xiang Zhao, Shijun Liu, Li Pan, Xin Li","doi":"10.1007/s11280-024-01288-x","DOIUrl":null,"url":null,"abstract":"<p>The construction of large open knowledge bases (OKBs) is integral to many knowledge-driven applications on the world wide web such as web search. However, noun phrases in OKBs often suffer from redundancy and ambiguity, which calls for the investigation on OKB canonicalization. Current solutions address OKB canonicalization by devising advanced clustering algorithms and using knowledge graph embedding (KGE) to further facilitate the canonicalization process. Nevertheless, these works fail to fully exploit the synergy between clustering and KGE learning, and the methods designed for these sub-tasks are sub-optimal. To this end, we put forward a multi-task learning framework, namely <span>MulCanon</span>, to tackle OKB canonicalization. Specifically, diffusion model is used in the soft clustering process to improve the noun phrase representations with neighboring information, which can lead to more accurate representations. <span>MulCanon</span> unifies the learning objective of diffusion model, KGE model, side information and cluster assignment, and adopts a two-stage multi-task learning paradigm for training. A thorough experimental study on popular OKB canonicalization benchmarks validates that <span>MulCanon</span> can achieve competitive canonicalization results.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":"179 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01288-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of large open knowledge bases (OKBs) is integral to many knowledge-driven applications on the world wide web such as web search. However, noun phrases in OKBs often suffer from redundancy and ambiguity, which calls for the investigation on OKB canonicalization. Current solutions address OKB canonicalization by devising advanced clustering algorithms and using knowledge graph embedding (KGE) to further facilitate the canonicalization process. Nevertheless, these works fail to fully exploit the synergy between clustering and KGE learning, and the methods designed for these sub-tasks are sub-optimal. To this end, we put forward a multi-task learning framework, namely MulCanon, to tackle OKB canonicalization. Specifically, diffusion model is used in the soft clustering process to improve the noun phrase representations with neighboring information, which can lead to more accurate representations. MulCanon unifies the learning objective of diffusion model, KGE model, side information and cluster assignment, and adopts a two-stage multi-task learning paradigm for training. A thorough experimental study on popular OKB canonicalization benchmarks validates that MulCanon can achieve competitive canonicalization results.