{"title":"A MILP model and a heuristic algorithm for post-disaster connectivity problem with heterogeneous vehicles","authors":"İlknur Tükenmez, Tugba Saraç, Onur Kaya","doi":"10.1007/s10732-024-09531-4","DOIUrl":null,"url":null,"abstract":"<p>Throughout the response phase of the disaster, the speedy restoration of transportation by reconnecting the nodes where the connection is broken is absolutely critical for evacuating civilians, providing clear access to hospitals, and distributing aid. Following a disaster, some roads in a disaster area might be closed to transportation. In reality, some roads can be blocked due to debris, and some of roads can be blocked by collapsing. In this model, different types of road unblocking methods are included, and each road can only be opened to access by a vehicle suitable for that method. So, different types of vehicles may be needed to repair the roads depending on the type of damage. In addition, fast-built bridges built both on land and over water are also used if necessary following a disaster. In problems of this nature, it is essential to restore the roads to enable the complete connectivity of the network such that all nodes can be reached by one another. In addition, it is also critical for the speedy reach of critical nodes, such as hospitals, and emergency disaster centers. This study aims to reduce the maximum time for connection and minimize the total time in which to reach critical nodes. For this purpose, we developed a bi-objective mathematical model that considers the multiple vehicle types that can repair different types of damages. Since the problem is NP-hard, two heuristic methods were developed, and the numerical results were presented. It has been observed that the local search algorithm gives better results than the hybrid algorithm. Additionally, different scenario data was produced. Numbers of unconnected components from 3 to 10 are solved with heuristic algorithms for test data containing 80 and 250 nodes, and real-life data containing 223 nodes and 391 edges are solved with heuristic algorithms for the number of unconnected components 6, 9, 12, and 15.</p>","PeriodicalId":54810,"journal":{"name":"Journal of Heuristics","volume":"30 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heuristics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10732-024-09531-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Throughout the response phase of the disaster, the speedy restoration of transportation by reconnecting the nodes where the connection is broken is absolutely critical for evacuating civilians, providing clear access to hospitals, and distributing aid. Following a disaster, some roads in a disaster area might be closed to transportation. In reality, some roads can be blocked due to debris, and some of roads can be blocked by collapsing. In this model, different types of road unblocking methods are included, and each road can only be opened to access by a vehicle suitable for that method. So, different types of vehicles may be needed to repair the roads depending on the type of damage. In addition, fast-built bridges built both on land and over water are also used if necessary following a disaster. In problems of this nature, it is essential to restore the roads to enable the complete connectivity of the network such that all nodes can be reached by one another. In addition, it is also critical for the speedy reach of critical nodes, such as hospitals, and emergency disaster centers. This study aims to reduce the maximum time for connection and minimize the total time in which to reach critical nodes. For this purpose, we developed a bi-objective mathematical model that considers the multiple vehicle types that can repair different types of damages. Since the problem is NP-hard, two heuristic methods were developed, and the numerical results were presented. It has been observed that the local search algorithm gives better results than the hybrid algorithm. Additionally, different scenario data was produced. Numbers of unconnected components from 3 to 10 are solved with heuristic algorithms for test data containing 80 and 250 nodes, and real-life data containing 223 nodes and 391 edges are solved with heuristic algorithms for the number of unconnected components 6, 9, 12, and 15.
期刊介绍:
The Journal of Heuristics provides a forum for advancing the state-of-the-art in the theory and practical application of techniques for solving problems approximately that cannot be solved exactly. It fosters the development, understanding, and practical use of heuristic solution techniques for solving business, engineering, and societal problems. It considers the importance of theoretical, empirical, and experimental work related to the development of heuristics.
The journal presents practical applications, theoretical developments, decision analysis models that consider issues of rational decision making with limited information, artificial intelligence-based heuristics applied to a wide variety of problems, learning paradigms, and computational experimentation.
Officially cited as: J Heuristics
Provides a forum for advancing the state-of-the-art in the theory and practical application of techniques for solving problems approximately that cannot be solved exactly.
Fosters the development, understanding, and practical use of heuristic solution techniques for solving business, engineering, and societal problems.
Considers the importance of theoretical, empirical, and experimental work related to the development of heuristics.