Algorithmic methods of finite discrete structures. Automorphism of Nonseparable Graphs

Sergey Kurapov, Maxim Davidovsky
{"title":"Algorithmic methods of finite discrete structures. Automorphism of Nonseparable Graphs","authors":"Sergey Kurapov, Maxim Davidovsky","doi":"arxiv-2407.12045","DOIUrl":null,"url":null,"abstract":"The monography examines the problem of constructing a group of automorphisms\nof a graph. A graph automorphism is a mapping of a set of vertices onto itself\nthat preserves adjacency. The set of such automorphisms forms a vertex group of\na graph or simply a graph group. The basis for constructing a group of graph\nautomorphisms is the concept of orbit. The construction of an orbit is closely\nrelated to the quantitative assessment of a vertex or edge of a graph, called\nweight. To determine the weight of an element, graph invariants built on the\nspectrum of edge cuts and the spectrum of edge cycles are used. The weight of\nthe graph elements allows identifying generating cycles and forming orbits.\nExamples are given of constructing a group of automorphisms for some types of\ngraphs.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The monography examines the problem of constructing a group of automorphisms of a graph. A graph automorphism is a mapping of a set of vertices onto itself that preserves adjacency. The set of such automorphisms forms a vertex group of a graph or simply a graph group. The basis for constructing a group of graph automorphisms is the concept of orbit. The construction of an orbit is closely related to the quantitative assessment of a vertex or edge of a graph, called weight. To determine the weight of an element, graph invariants built on the spectrum of edge cuts and the spectrum of edge cycles are used. The weight of the graph elements allows identifying generating cycles and forming orbits. Examples are given of constructing a group of automorphisms for some types of graphs.
有限离散结构的算法方法。不可分割图的自动形态
这本专著探讨了构建图的自动形态群的问题。图的自动映射是指将顶点集合映射到自身并保留邻接性的映射。这种自动形的集合构成图的顶点群或简称图群。构建图自形群的基础是轨道的概念。轨道的构建与图的顶点或边的定量评估(称为权重)密切相关。要确定元素的权重,需要使用基于边切割谱和边循环谱的图不变式。根据图元素的权重可以识别生成循环和形成轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信