Joint Impact of Maturation Delay and Fear Effect on the Population Dynamics of a Predator-Prey System

IF 1.9 4区 数学 Q1 MATHEMATICS, APPLIED
Xiaoke Ma, Ying Su, Xingfu Zou
{"title":"Joint Impact of Maturation Delay and Fear Effect on the Population Dynamics of a Predator-Prey System","authors":"Xiaoke Ma, Ying Su, Xingfu Zou","doi":"10.1137/23m1596569","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 4, Page 1557-1579, August 2024. <br/> Abstract. In this paper, taking into account the maturation period of prey, we propose a predator-prey model with time delay and fear effect. We confirm the well-posedness of the model system, explore the stability of the equilibria and uniform persistence of the model, and investigate Hopf bifurcations. Moreover, we also numerically explore the global continuation of the Hopf bifurcation. Interestingly, our results show that as the delay increases, the stable and unstable periodic solutions may both disappear and the unstable positive equilibrium may regain its stability. These results reveal how the maturation delay and the fear effect jointly impact the population dynamics of the predator-prey system.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1596569","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Applied Mathematics, Volume 84, Issue 4, Page 1557-1579, August 2024.
Abstract. In this paper, taking into account the maturation period of prey, we propose a predator-prey model with time delay and fear effect. We confirm the well-posedness of the model system, explore the stability of the equilibria and uniform persistence of the model, and investigate Hopf bifurcations. Moreover, we also numerically explore the global continuation of the Hopf bifurcation. Interestingly, our results show that as the delay increases, the stable and unstable periodic solutions may both disappear and the unstable positive equilibrium may regain its stability. These results reveal how the maturation delay and the fear effect jointly impact the population dynamics of the predator-prey system.
成熟延迟和恐惧效应对捕食者-猎物系统种群动态的共同影响
SIAM 应用数学杂志》第 84 卷第 4 期第 1557-1579 页,2024 年 8 月。 摘要本文考虑到猎物的成熟期,提出了一个具有时间延迟和恐惧效应的捕食者-猎物模型。我们证实了模型系统的拟合性,探讨了模型均衡的稳定性和均匀持久性,并研究了霍普夫分岔。此外,我们还用数值方法探讨了霍普夫分岔的全局持续性。有趣的是,我们的结果表明,随着延迟的增加,稳定和不稳定的周期解可能同时消失,而不稳定的正平衡可能恢复稳定。这些结果揭示了成熟延迟和恐惧效应如何共同影响捕食者-猎物系统的种群动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
79
审稿时长
12 months
期刊介绍: SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信