A criterion for sequential Cohen-Macaulayness

IF 0.5 4区 数学 Q3 MATHEMATICS
Giulio Caviglia, Alessandro De Stefani
{"title":"A criterion for sequential Cohen-Macaulayness","authors":"Giulio Caviglia,&nbsp;Alessandro De Stefani","doi":"10.1007/s00013-024-02011-y","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this note is to show that a finitely generated graded module <i>M</i> over <span>\\(S=k[x_1,\\ldots ,x_n]\\)</span>, <i>k</i> a field, is sequentially Cohen-Macaulay if and only if its arithmetic degree <span>\\({\\text {adeg}}(M)\\)</span> agrees with <span>\\({\\text {adeg}}(F/{\\text {gin}}_\\textrm{revlex}(U))\\)</span>, where <i>F</i> is a graded free <i>S</i>-module and <span>\\(M \\cong F/U\\)</span>. This answers positively a conjecture of Lu and Yu from 2016.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02011-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02011-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this note is to show that a finitely generated graded module M over \(S=k[x_1,\ldots ,x_n]\), k a field, is sequentially Cohen-Macaulay if and only if its arithmetic degree \({\text {adeg}}(M)\) agrees with \({\text {adeg}}(F/{\text {gin}}_\textrm{revlex}(U))\), where F is a graded free S-module and \(M \cong F/U\). This answers positively a conjecture of Lu and Yu from 2016.

科恩-麦考莱连续性标准
本注释的目的是证明在 k 为域的\(S=k[x_1,\ldots ,x_n]\)上有限生成的有级模块 M、当且仅当它的算术度 \({\text{adeg}}(M)\)与 \({\text {adeg}}(F/{text {gin}}_\textrm{revlex}(U))\) 一致时,它才是科恩-麦考莱序列,其中 F 是一个有级自由 S 模块,并且 \(M \cong F/U\).这正面回答了 Lu 和 Yu 在 2016 年提出的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信