{"title":"Almost periodic solutions of the parabolic-elliptic Keller–Segel system on the whole space","authors":"Nguyen Thi Loan, Pham Truong Xuan","doi":"10.1007/s00013-024-02023-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the existence and uniqueness of almost periodic solutions for the parabolic-elliptic Keller–Segel system on the whole space <span>\\(\\mathbb {R}^n\\,\\, (n \\geqslant 4)\\)</span>. We work in the framework of critical spaces such as on the weak-Lorentz space <span>\\(L^{\\frac{n}{2},\\infty }(\\mathbb {R}^n)\\)</span>. Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments.\n</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02023-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the existence and uniqueness of almost periodic solutions for the parabolic-elliptic Keller–Segel system on the whole space \(\mathbb {R}^n\,\, (n \geqslant 4)\). We work in the framework of critical spaces such as on the weak-Lorentz space \(L^{\frac{n}{2},\infty }(\mathbb {R}^n)\). Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.