Reduced polygons in the hyperbolic plane

IF 0.5 4区 数学 Q3 MATHEMATICS
Marek Lassak
{"title":"Reduced polygons in the hyperbolic plane","authors":"Marek Lassak","doi":"10.1007/s00013-024-02009-6","DOIUrl":null,"url":null,"abstract":"<div><p>For a hyperplane <i>H</i> supporting a convex body <i>C</i> in the hyperbolic space <span>\\(\\mathbb {H}^d\\)</span>, we define the width of <i>C</i> determined by <i>H</i> as the distance between <i>H</i> and a most distant ultraparallel hyperplane supporting <i>C</i>. The minimum width of <i>C</i> over all supporting <i>H</i> is called the thickness <span>\\(\\Delta (C)\\)</span> of <i>C</i>. A convex body <span>\\(R \\subset \\mathbb {H}^{d}\\)</span> is said to be reduced if <span>\\(\\Delta (Z) &lt; \\Delta (R)\\)</span> for every convex body <i>Z</i> properly contained in <i>R</i>. We describe a class of reduced polygons in <span>\\(\\mathbb {H}^{2}\\)</span> and present some properties of them. In particular, we estimate their diameters in terms of their thicknesses.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02009-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02009-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a hyperplane H supporting a convex body C in the hyperbolic space \(\mathbb {H}^d\), we define the width of C determined by H as the distance between H and a most distant ultraparallel hyperplane supporting C. The minimum width of C over all supporting H is called the thickness \(\Delta (C)\) of C. A convex body \(R \subset \mathbb {H}^{d}\) is said to be reduced if \(\Delta (Z) < \Delta (R)\) for every convex body Z properly contained in R. We describe a class of reduced polygons in \(\mathbb {H}^{2}\) and present some properties of them. In particular, we estimate their diameters in terms of their thicknesses.

Abstract Image

双曲面中的还原多边形
对于双曲空间 \(\mathbb {H}^{d}\)中支持凸体 C 的超平面 H,我们将 H 确定的 C 的宽度定义为 H 与支持 C 的最远超平行超平面之间的距离。我们描述了一类在 \(\mathbb {H}^{2}\) 中的还原多边形,并提出了它们的一些性质。特别是,我们用它们的厚度来估计它们的直径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信