{"title":"Experimental and numerical study on the shear behavior of hybrid BFRP/steel RC beams without shear reinforcement","authors":"Wen Xu, Jin Wu, Yahia M. S. Ali","doi":"10.1177/07316844241263895","DOIUrl":null,"url":null,"abstract":"Hybrid reinforcement of steel and fiber-reinforced polymer (FRP) bars can provide a balanced performance between strength, ductility, and durability for the concrete structures. Thus, this study evaluates the shear performance of hybrid Basalt-FRP/steel-RC beams without shear reinforcement. A total of twelve RC beams were cast and tested under four-point loading to study the influence of reinforcement type, reinforcement ratio of longitudinal bars and axial stiffness between FRP and steel ratio, [Formula: see text] on the shear performance of the concrete beams. The test results were analyzed in terms of crack patterns, load-midspan deflection, load-crack width relationships, and shear strength of the tested beams. In addition, the experimental results were compared with the theoretical results obtained from various design codes and guidelines. Moreover, a finite element (FE) model was created, and the experimental results were used for validation of the FE model. The test results revealed that the beam specimens designed with similar effective reinforcement ratio exhibits comparable shear strength nevertheless the tensile reinforcement used. Experimental test results demonstrated that using hybrid bars increased the shear capacity of the beams by 11% compared to steel bars. Furthermore, the energy absorption of the hybrid-RC beams was enhanced by 16% compared to FRP-RC beams. By elevating the [Formula: see text] ratio from 1.25 to 2.44, both the shear strength and energy absorption improved by approximately 10%. Notably, there was a significant decrease in the deflection and crack width of the hybrid-RC beams in comparison to the FRP-RC beams. The design codes ACI440.11-22 and CSA S806-12 displayed accurate enough estimates of the shear strength, while JSCE-1997 showed a conservative result.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"63 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241263895","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid reinforcement of steel and fiber-reinforced polymer (FRP) bars can provide a balanced performance between strength, ductility, and durability for the concrete structures. Thus, this study evaluates the shear performance of hybrid Basalt-FRP/steel-RC beams without shear reinforcement. A total of twelve RC beams were cast and tested under four-point loading to study the influence of reinforcement type, reinforcement ratio of longitudinal bars and axial stiffness between FRP and steel ratio, [Formula: see text] on the shear performance of the concrete beams. The test results were analyzed in terms of crack patterns, load-midspan deflection, load-crack width relationships, and shear strength of the tested beams. In addition, the experimental results were compared with the theoretical results obtained from various design codes and guidelines. Moreover, a finite element (FE) model was created, and the experimental results were used for validation of the FE model. The test results revealed that the beam specimens designed with similar effective reinforcement ratio exhibits comparable shear strength nevertheless the tensile reinforcement used. Experimental test results demonstrated that using hybrid bars increased the shear capacity of the beams by 11% compared to steel bars. Furthermore, the energy absorption of the hybrid-RC beams was enhanced by 16% compared to FRP-RC beams. By elevating the [Formula: see text] ratio from 1.25 to 2.44, both the shear strength and energy absorption improved by approximately 10%. Notably, there was a significant decrease in the deflection and crack width of the hybrid-RC beams in comparison to the FRP-RC beams. The design codes ACI440.11-22 and CSA S806-12 displayed accurate enough estimates of the shear strength, while JSCE-1997 showed a conservative result.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).