A Construction of Quantum Stabilizer Codes from Classical Codes and Butson Hadamard Matrices

Bulent Sarac, Damla Acar
{"title":"A Construction of Quantum Stabilizer Codes from Classical Codes and Butson Hadamard Matrices","authors":"Bulent Sarac, Damla Acar","doi":"arxiv-2407.13527","DOIUrl":null,"url":null,"abstract":"In this paper, we give a constructive proof to show that if there exist a\nclassical linear code C is a subset of F_q^n of dimension k and a classical\nlinear code D is a subset of F_q^k^m of dimension s, where q is a power of a\nprime number p, then there exists an [[nm, ks, d]]_q quantum stabilizer code\nwith d determined by C and D by identifying the stabilizer group of the code.\nIn the construction, we use a particular type of Butson Hadamard matrices\nequivalent to multiple Kronecker products of the Fourier matrix of order p. We\nalso consider the same construction of a quantum code for a general normalized\nButson Hadamard matrix and search for a condition for the quantum code to be a\nstabilizer code.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give a constructive proof to show that if there exist a classical linear code C is a subset of F_q^n of dimension k and a classical linear code D is a subset of F_q^k^m of dimension s, where q is a power of a prime number p, then there exists an [[nm, ks, d]]_q quantum stabilizer code with d determined by C and D by identifying the stabilizer group of the code. In the construction, we use a particular type of Butson Hadamard matrices equivalent to multiple Kronecker products of the Fourier matrix of order p. We also consider the same construction of a quantum code for a general normalized Butson Hadamard matrix and search for a condition for the quantum code to be a stabilizer code.
从经典代码和 Butson Hadamard 矩阵构建量子稳定器代码
在本文中,我们给出了一个构造性证明,表明如果存在一个经典线性码 C 是维数为 k 的 F_q^n 的子集,一个经典线性码 D 是维数为 s 的 F_q^k^m 的子集,其中 q 是时间数 p 的幂,那么存在一个 [[nm, ks, d]]_q量子稳定器码,其中 d 由 C 和 D 通过识别码的稳定器组决定。在构造中,我们使用了一种特定类型的布特森哈达玛矩阵,它等价于 p 阶傅里叶矩阵的多个克朗克乘积。我们还考虑了一般归一化布特森哈达玛矩阵的量子密码的相同构造,并寻找量子密码成为稳定器密码的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信