{"title":"ForLion: a new algorithm for D-optimal designs under general parametric statistical models with mixed factors","authors":"Yifei Huang, Keren Li, Abhyuday Mandal, Jie Yang","doi":"10.1007/s11222-024-10465-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we address the problem of designing an experimental plan with both discrete and continuous factors under fairly general parametric statistical models. We propose a new algorithm, named ForLion, to search for locally optimal approximate designs under the D-criterion. The algorithm performs an exhaustive search in a design space with mixed factors while keeping high efficiency and reducing the number of distinct experimental settings. Its optimality is guaranteed by the general equivalence theorem. We present the relevant theoretical results for multinomial logit models (MLM) and generalized linear models (GLM), and demonstrate the superiority of our algorithm over state-of-the-art design algorithms using real-life experiments under MLM and GLM. Our simulation studies show that the ForLion algorithm could reduce the number of experimental settings by 25% or improve the relative efficiency of the designs by 17.5% on average. Our algorithm can help the experimenters reduce the time cost, the usage of experimental devices, and thus the total cost of their experiments while preserving high efficiencies of the designs.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"9 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10465-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we address the problem of designing an experimental plan with both discrete and continuous factors under fairly general parametric statistical models. We propose a new algorithm, named ForLion, to search for locally optimal approximate designs under the D-criterion. The algorithm performs an exhaustive search in a design space with mixed factors while keeping high efficiency and reducing the number of distinct experimental settings. Its optimality is guaranteed by the general equivalence theorem. We present the relevant theoretical results for multinomial logit models (MLM) and generalized linear models (GLM), and demonstrate the superiority of our algorithm over state-of-the-art design algorithms using real-life experiments under MLM and GLM. Our simulation studies show that the ForLion algorithm could reduce the number of experimental settings by 25% or improve the relative efficiency of the designs by 17.5% on average. Our algorithm can help the experimenters reduce the time cost, the usage of experimental devices, and thus the total cost of their experiments while preserving high efficiencies of the designs.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.