There are no Keller maps having prime degree field extensions

Vered Moskowicz
{"title":"There are no Keller maps having prime degree field extensions","authors":"Vered Moskowicz","doi":"arxiv-2407.13795","DOIUrl":null,"url":null,"abstract":"The two-dimensional Jacobian Conjecture says that a Keller map $f: (x,y)\n\\mapsto (p,q) \\in k[x,y]^2$ having an invertible Jacobian is an automorphism of\n$k[x,y]$. We prove that there is no Keller map with $[k(x,y): k(p,q)]$ prime.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The two-dimensional Jacobian Conjecture says that a Keller map $f: (x,y) \mapsto (p,q) \in k[x,y]^2$ having an invertible Jacobian is an automorphism of $k[x,y]$. We prove that there is no Keller map with $[k(x,y): k(p,q)]$ prime.
不存在具有素度域扩展的凯勒映射
二维雅各布猜想说,在 k[x,y]^2$ 中具有可逆雅各布的凯勒映射 $f: (x,y)/mapsto (p,q) /是$k[x,y]$的自动变形。我们证明不存在$[k(x,y): k(p,q)]$质数的凯勒映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信