Exponential radii of starlikeness and convexity of some special functions

Adiba Naz, Sumit Nagpal, V. Ravichandran
{"title":"Exponential radii of starlikeness and convexity of some special functions","authors":"Adiba Naz, Sumit Nagpal, V. Ravichandran","doi":"10.1007/s11139-024-00902-w","DOIUrl":null,"url":null,"abstract":"<p>Using the Hadamard factorization, the exponential radii of starlikeness and convexity for various special functions like Wright function, Lommel function, Struve function, Ramanujan type entire function, cross product and product of Bessel function have been investigated. For certain ranges of the parameters appearing in these special functions, the precise values of the exponential radii of starlikeness and convexity are calculated as the solutions of transcendental equations. The interlacing property of the zeros of special functions and their derivatives is the fundamental technique utilized to demonstrate these results.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"889 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00902-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the Hadamard factorization, the exponential radii of starlikeness and convexity for various special functions like Wright function, Lommel function, Struve function, Ramanujan type entire function, cross product and product of Bessel function have been investigated. For certain ranges of the parameters appearing in these special functions, the precise values of the exponential radii of starlikeness and convexity are calculated as the solutions of transcendental equations. The interlacing property of the zeros of special functions and their derivatives is the fundamental technique utilized to demonstrate these results.

Abstract Image

一些特殊函数的星形和凸形的指数半径
利用 Hadamard 因式分解,研究了各种特殊函数(如赖特函数、洛美尔函数、斯特鲁夫函数、Ramanujan 型全函数、交叉积和贝赛尔函数的积)的星性和凸性指数半径。对于这些特殊函数中出现的参数的特定范围,星度和凸度指数半径的精确值是作为超越方程的解计算出来的。特殊函数的零点及其导数的交错特性是用来证明这些结果的基本技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信