Enumeration of non-nodal real plane rational curves

IF 1 3区 数学 Q1 MATHEMATICS
Eugenii Shustin
{"title":"Enumeration of non-nodal real plane rational curves","authors":"Eugenii Shustin","doi":"10.1007/s00209-024-03546-0","DOIUrl":null,"url":null,"abstract":"<p>Welschinger invariants enumerate real nodal rational curves in the plane or in another real rational surface. We analyze the existence of similar enumerative invariants that count real rational plane curves having prescribed non-nodal singularities and passing through a generic conjugation-invariant configuration of appropriately many points in the plane. We show that an invariant like this is unique: it enumerates real rational three-cuspidal quartics that pass through generically chosen four pairs of complex conjugate points. As a consequence, we show that through any generic configuration of four pairs of complex conjugate points, one can always trace a pair of real rational three-cuspidal quartics.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"84 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03546-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Welschinger invariants enumerate real nodal rational curves in the plane or in another real rational surface. We analyze the existence of similar enumerative invariants that count real rational plane curves having prescribed non-nodal singularities and passing through a generic conjugation-invariant configuration of appropriately many points in the plane. We show that an invariant like this is unique: it enumerates real rational three-cuspidal quartics that pass through generically chosen four pairs of complex conjugate points. As a consequence, we show that through any generic configuration of four pairs of complex conjugate points, one can always trace a pair of real rational three-cuspidal quartics.

Abstract Image

非节点实平面有理曲线枚举
韦尔申格不变式列举了平面或另一个实有理曲面中的实节点有理曲线。我们分析了类似的枚举不变式的存在性,这些不变式列举了具有规定非节点奇异点的实有理平面曲线,这些曲线经过平面中适当多点的通用共轭不变配置。我们证明,这样的不变量是独一无二的:它列举了通过一般选择的四对复共轭点的实有理三凸四边形。因此,我们证明,通过任何由四对复共轭点组成的通用配置,总能追踪到一对实有理三余弦四次方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信