A novel design of recurrent neural network to investigate the heat transmission of radiative Casson nanofluid flow consisting of carbon nanotubes (CNTs) across a curved stretchable surface

Hafiz Muhammad Shahbaz, Iftikhar Ahmad, Muhammad Asif Zahoor Raja, Hira Ilyas, Kottakkaran Sooppy Nisar, Muhammad Shoaib
{"title":"A novel design of recurrent neural network to investigate the heat transmission of radiative Casson nanofluid flow consisting of carbon nanotubes (CNTs) across a curved stretchable surface","authors":"Hafiz Muhammad Shahbaz, Iftikhar Ahmad, Muhammad Asif Zahoor Raja, Hira Ilyas, Kottakkaran Sooppy Nisar, Muhammad Shoaib","doi":"10.1002/zamm.202400104","DOIUrl":null,"url":null,"abstract":"This study aims to develop a supervised learning artificial recurrent neural network algorithm supported by Bayesian regularization called (ARNN‐BR) to analyze the impact of physical parameters, including radius of curvature (), Casson parameter (), heat generation parameter () and radiation parameter () on velocity <jats:italic>fʹ</jats:italic>(<jats:italic>η</jats:italic>), and temperature profiles θ(<jats:italic>η</jats:italic>) in Casson nanofluid consisting of carbon nanotubes (CNTs‐CNF) model for single and multiwalled CNTs across a curved stretched surface. The numerical dataset of the proposed model has been constructed by varying various parameters for five scenarios that are used in a Bayesian regularization‐based intelligent computing method to build networks for approximating the numerical solutions of CNTs‐CNF model. It is observed that increment in the dimensionless radius of curvature () causes to rise an increase in the velocity profile <jats:italic>fʹ</jats:italic>(<jats:italic>η</jats:italic>) for both SWCNTs and MWCNTs. However, a contrasting trend is observed when the Casson parameter () is increased to higher values. The temperature θ(<jats:italic>η</jats:italic>) of fluid increases as the heat generation parameter () and radiation parameter () increase. However, an opposite behavior is noticed when the dimensionless radius of curvature () varies. The effectiveness and significance of designed Bayesian regularization based artificial recurrent neural networks (ARNN‐BR) is demonstrated through regression index measurements, error histogram studies, auto‐correlation analysis and convergence curves showing a minimal level of mean square error (E‐11 to E‐04) for the comprehensive simulations of CNTs‐CNF model. The designed ARNN‐BR algorithm is employed in many domains such as voice recognition, machine translation, identification of neurological brain illnesses as well as for automated translation of texts across different languages.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202400104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop a supervised learning artificial recurrent neural network algorithm supported by Bayesian regularization called (ARNN‐BR) to analyze the impact of physical parameters, including radius of curvature (), Casson parameter (), heat generation parameter () and radiation parameter () on velocity (η), and temperature profiles θ(η) in Casson nanofluid consisting of carbon nanotubes (CNTs‐CNF) model for single and multiwalled CNTs across a curved stretched surface. The numerical dataset of the proposed model has been constructed by varying various parameters for five scenarios that are used in a Bayesian regularization‐based intelligent computing method to build networks for approximating the numerical solutions of CNTs‐CNF model. It is observed that increment in the dimensionless radius of curvature () causes to rise an increase in the velocity profile (η) for both SWCNTs and MWCNTs. However, a contrasting trend is observed when the Casson parameter () is increased to higher values. The temperature θ(η) of fluid increases as the heat generation parameter () and radiation parameter () increase. However, an opposite behavior is noticed when the dimensionless radius of curvature () varies. The effectiveness and significance of designed Bayesian regularization based artificial recurrent neural networks (ARNN‐BR) is demonstrated through regression index measurements, error histogram studies, auto‐correlation analysis and convergence curves showing a minimal level of mean square error (E‐11 to E‐04) for the comprehensive simulations of CNTs‐CNF model. The designed ARNN‐BR algorithm is employed in many domains such as voice recognition, machine translation, identification of neurological brain illnesses as well as for automated translation of texts across different languages.
一种新颖的递归神经网络设计,用于研究由碳纳米管组成的辐射卡松纳米流体在弯曲的可拉伸表面上的热传输
本研究旨在开发一种贝叶斯正则化支持的监督学习人工递归神经网络算法(ARNN-BR),以分析单壁和多壁碳纳米管(CNTs-CNF)在弯曲拉伸表面上的曲率半径()、卡森参数()、发热参数()和辐射参数()等物理参数对碳纳米管组成的卡森纳米流体(CNTs-CNF)模型中速度fʹ(η)和温度曲线θ(η)的影响。拟议模型的数值数据集是通过改变五种情况下的各种参数构建的,这些参数被用于基于贝叶斯正则化的智能计算方法,以构建近似 CNTs-CNF 模型数值解的网络。据观察,无量纲曲率半径()的增加会导致 SWCNTs 和 MWCNTs 的速度曲线 fʹ(η)上升。然而,当卡森参数()增加到更高值时,却出现了相反的趋势。流体的温度θ(η)随着发热参数()和辐射参数()的增加而升高。然而,当无量纲曲率半径()变化时,却出现了相反的行为。通过对 CNTs-CNF 模型的回归指数测量、误差直方图研究、自相关分析和收敛曲线显示最小均方误差水平(E-11 至 E-04),证明了所设计的基于贝叶斯正则化的人工循环神经网络(ARNN-BR)的有效性和重要性。所设计的 ARNN-BR 算法可用于语音识别、机器翻译、脑神经疾病识别以及不同语言文本的自动翻译等多个领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信