The pseudo-Boolean polytope and polynomial-size extended formulations for binary polynomial optimization

IF 2.2 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Alberto Del Pia, Aida Khajavirad
{"title":"The pseudo-Boolean polytope and polynomial-size extended formulations for binary polynomial optimization","authors":"Alberto Del Pia, Aida Khajavirad","doi":"10.1007/s10107-024-02122-y","DOIUrl":null,"url":null,"abstract":"<p>With the goal of obtaining strong relaxations for binary polynomial optimization problems, we introduce the pseudo-Boolean polytope defined as the set of binary points <span>\\(z \\in \\{0,1\\}^{V \\cup S}\\)</span> satisfying a collection of equalities of the form <span>\\(z_s = \\prod _{v \\in s} \\sigma _s(z_v)\\)</span>, for all <span>\\(s \\in S\\)</span>, where <span>\\(\\sigma _s(z_v) \\in \\{z_v, 1-z_v\\}\\)</span>, and where <i>S</i> is a multiset of subsets of <i>V</i>. By representing the pseudo-Boolean polytope via a signed hypergraph, we obtain sufficient conditions under which this polytope has a polynomial-size extended formulation. Our new framework unifies and extends all prior results on the existence of polynomial-size extended formulations for the convex hull of the feasible region of binary polynomial optimization problems of degree at least three.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"62 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02122-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

With the goal of obtaining strong relaxations for binary polynomial optimization problems, we introduce the pseudo-Boolean polytope defined as the set of binary points \(z \in \{0,1\}^{V \cup S}\) satisfying a collection of equalities of the form \(z_s = \prod _{v \in s} \sigma _s(z_v)\), for all \(s \in S\), where \(\sigma _s(z_v) \in \{z_v, 1-z_v\}\), and where S is a multiset of subsets of V. By representing the pseudo-Boolean polytope via a signed hypergraph, we obtain sufficient conditions under which this polytope has a polynomial-size extended formulation. Our new framework unifies and extends all prior results on the existence of polynomial-size extended formulations for the convex hull of the feasible region of binary polynomial optimization problems of degree at least three.

Abstract Image

二元多项式优化的伪布尔多面体和多项式大小扩展公式
为了获得二元多项式优化问题的强放松,我们引入了伪布尔多面体,它被定义为满足一系列等式的二元点的集合(z in \{0,1\}^{V \cup S}\) (z_s = \prod _{v \in s} )。\通过用有符号的超图来表示伪布尔多面体,我们得到了该多面体具有多项式大小的扩展表述的充分条件。我们的新框架统一并扩展了之前关于至少三度二元多项式优化问题可行区域凸壳的多项式大小扩展公式存在性的所有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Programming
Mathematical Programming 数学-计算机:软件工程
CiteScore
5.70
自引率
11.10%
发文量
160
审稿时长
4-8 weeks
期刊介绍: Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信