From Words to Worlds: Compositionality for Cognitive Architectures

Ruchira Dhar, Anders Søgaard
{"title":"From Words to Worlds: Compositionality for Cognitive Architectures","authors":"Ruchira Dhar, Anders Søgaard","doi":"arxiv-2407.13419","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) are very performant connectionist systems, but\ndo they exhibit more compositionality? More importantly, is that part of why\nthey perform so well? We present empirical analyses across four LLM families\n(12 models) and three task categories, including a novel task introduced below.\nOur findings reveal a nuanced relationship in learning of compositional\nstrategies by LLMs -- while scaling enhances compositional abilities,\ninstruction tuning often has a reverse effect. Such disparity brings forth some\nopen issues regarding the development and improvement of large language models\nin alignment with human cognitive capacities.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) are very performant connectionist systems, but do they exhibit more compositionality? More importantly, is that part of why they perform so well? We present empirical analyses across four LLM families (12 models) and three task categories, including a novel task introduced below. Our findings reveal a nuanced relationship in learning of compositional strategies by LLMs -- while scaling enhances compositional abilities, instruction tuning often has a reverse effect. Such disparity brings forth some open issues regarding the development and improvement of large language models in alignment with human cognitive capacities.
从文字到世界:认知架构的组合性
大型语言模型(LLM)是性能极佳的联结主义系统,但它们是否表现出更多的组合性?更重要的是,这是否是它们表现如此出色的部分原因?我们对四个 LLM 家族(12 个模型)和三个任务类别(包括下文介绍的一个新任务)进行了实证分析。我们的研究结果揭示了 LLM 学习组合策略的微妙关系--虽然缩放增强了组合能力,但指令调整往往会产生相反的效果。这种差异为开发和改进符合人类认知能力的大型语言模型提出了一些有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信