Elliptic Analogue of the Vershik–Kerov Limit Shape

IF 0.6 4区 数学 Q3 MATHEMATICS
Andrei Grekov, Nikita Nekrasov
{"title":"Elliptic Analogue of the Vershik–Kerov Limit Shape","authors":"Andrei Grekov,&nbsp;Nikita Nekrasov","doi":"10.1134/S0016266324020059","DOIUrl":null,"url":null,"abstract":"<p> We review the limit shape problem for the Plancherel measure and its generalizations found in supersymmetric gauge theory instanton count. We focus on the measure, interpolating between the Plancherel measure and the uniform measure, a <span>\\(U(1)\\)</span> case of <span>\\(\\mathcal{N}=2^{*}\\)</span> gauge theory. We give the formula for its limit shape in terms of elliptic functions, generalizing the trigonometric “arcsin” law of Vershik–Kerov and Logan–Schepp. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"58 2","pages":"143 - 159"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0016266324020059.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266324020059","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We review the limit shape problem for the Plancherel measure and its generalizations found in supersymmetric gauge theory instanton count. We focus on the measure, interpolating between the Plancherel measure and the uniform measure, a \(U(1)\) case of \(\mathcal{N}=2^{*}\) gauge theory. We give the formula for its limit shape in terms of elliptic functions, generalizing the trigonometric “arcsin” law of Vershik–Kerov and Logan–Schepp.

Abstract Image

Vershik-Kerov 极限形状的椭圆类似物
摘要 我们回顾了普朗切尔量度的极限形状问题及其在超对称规理论瞬子计数中的泛化。我们关注的是介于普朗切尔量度和均匀量度之间的量度,它是\(\mathcal{N}=2^{*}\)规理论的一种(U(1)\)情况。我们用椭圆函数给出了它的极限形状公式,概括了 Vershik-Kerov 和 Logan-Schepp 的三角函数 "arcsin "定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信