Golden and Silver Stationary Points in Probe Particle Dynamics within a Modular Domain

IF 0.6 4区 数学 Q3 MATHEMATICS
Alexander Gorsky, Sergei Nechaev
{"title":"Golden and Silver Stationary Points in Probe Particle Dynamics within a Modular Domain","authors":"Alexander Gorsky,&nbsp;Sergei Nechaev","doi":"10.1134/S0016266324020047","DOIUrl":null,"url":null,"abstract":"<p> The flows generated by the iterative dynamics of triangle reflections are analyzed. These flows are interpreted as the adiabatic dynamics of probe particles within the fundamental domain of the modular group. Two specific cases of lattices are considered: (a) those generated by reflections of equilateral triangles, and (b) those generated by reflections of rectangular isosceles triangles. We demonstrate that the stationary points of the flows for equilateral and isosceles triangles correspond to the “Golden” and the “Silver” ratios, respectively. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266324020047","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The flows generated by the iterative dynamics of triangle reflections are analyzed. These flows are interpreted as the adiabatic dynamics of probe particles within the fundamental domain of the modular group. Two specific cases of lattices are considered: (a) those generated by reflections of equilateral triangles, and (b) those generated by reflections of rectangular isosceles triangles. We demonstrate that the stationary points of the flows for equilateral and isosceles triangles correspond to the “Golden” and the “Silver” ratios, respectively.

Abstract Image

模块域内探测器粒子动力学中的金银静止点
摘要 分析了三角形反射迭代动力学产生的流。这些流被解释为模组基本域内探测粒子的绝热动力学。我们考虑了两种特定的网格情况:(a) 由等边三角形反射产生的网格;(b) 由矩形等腰三角形反射产生的网格。我们证明了等边三角形和等腰三角形的流动静止点分别对应于 "黄金比 "和 "白银比"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信