Categorical Foundations of Formalized Condensed Mathematics

Dagur AsgeirssonIMJ-PRG, Riccardo BrascaIMJ-PRG, Nikolas KuhnUiO, Filippo Alberto Edoardo Nuccio Mortarino Majno Di CapriglioICJ, UJM, CTN, Adam Topaz
{"title":"Categorical Foundations of Formalized Condensed Mathematics","authors":"Dagur AsgeirssonIMJ-PRG, Riccardo BrascaIMJ-PRG, Nikolas KuhnUiO, Filippo Alberto Edoardo Nuccio Mortarino Majno Di CapriglioICJ, UJM, CTN, Adam Topaz","doi":"arxiv-2407.12840","DOIUrl":null,"url":null,"abstract":"Condensed mathematics, developed by Clausen and Scholze over the last few\nyears, proposes a generalization of topology with better categorical\nproperties. It replaces the concept of a topological space by that of a\ncondensed set, which can be defined as a sheaf for the coherent topology on a\ncertain category of compact Hausdorff spaces. In this case, the sheaf condition\nhas a fairly simple explicit description, which arises from studying the\nrelationship between the coherent, regular and extensive topologies. In this\npaper, we establish this relationship under minimal assumptions on the\ncategory, going beyond the case of compact Hausdorff spaces. Along the way, we\nalso provide a characterizations of sheaves and covering sieves for these\ncategories. All results in this paper have been fully formalized in the Lean\nproof assistant.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Condensed mathematics, developed by Clausen and Scholze over the last few years, proposes a generalization of topology with better categorical properties. It replaces the concept of a topological space by that of a condensed set, which can be defined as a sheaf for the coherent topology on a certain category of compact Hausdorff spaces. In this case, the sheaf condition has a fairly simple explicit description, which arises from studying the relationship between the coherent, regular and extensive topologies. In this paper, we establish this relationship under minimal assumptions on the category, going beyond the case of compact Hausdorff spaces. Along the way, we also provide a characterizations of sheaves and covering sieves for these categories. All results in this paper have been fully formalized in the Lean proof assistant.
形式化凝聚数学的分类基础
由克劳森和肖尔泽在过去几年中发展起来的凝聚数学,提出了一种具有更好分类特性的拓扑学概论。它用凝聚集的概念取代了拓扑空间的概念,而凝聚集可以定义为紧凑 Hausdorff 空间的某一类别上的相干拓扑的一个 Sheaf。在这种情况下,舍夫条件有一个相当简单的明确描述,它产生于对相干拓扑、规则拓扑和广义拓扑之间关系的研究。在本文中,我们超越了紧凑 Hausdorff 空间的情况,在对范畴的最小假设下建立了这种关系。同时,我们还为这些范畴提供了剪切和覆盖筛的特征。本文中的所有结果都已在 Leanproof 助手中得到了充分的形式化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信