General K-closedness results in noncommutative Lebesgue spaces and applications to the real interpolation of noncommutative martingale Hardy spaces

Hugues Moyart
{"title":"General K-closedness results in noncommutative Lebesgue spaces and applications to the real interpolation of noncommutative martingale Hardy spaces","authors":"Hugues Moyart","doi":"arxiv-2407.12335","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a new general $K$-closedness result in the\ncontext of real interpolation of noncommutative Lebesgue spaces involving\nfiltrations. As an application, we derive $K$-closedness results for various\nclasses of noncommutative martingale Hardy spaces, addressing a problem raised\nby Randrianantoanina. The proof of this general result adapts Bourgain's\napproach to the real interpolation of classical Hardy spaces on the disk within\nthe framework of noncommutative martingales.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish a new general $K$-closedness result in the context of real interpolation of noncommutative Lebesgue spaces involving filtrations. As an application, we derive $K$-closedness results for various classes of noncommutative martingale Hardy spaces, addressing a problem raised by Randrianantoanina. The proof of this general result adapts Bourgain's approach to the real interpolation of classical Hardy spaces on the disk within the framework of noncommutative martingales.
非交换勒贝格空间中的一般K封闭性结果及其在非交换马丁格哈代空间实插值中的应用
在本文中,我们在涉及滤波的非交换 Lebesgue 空间实插值的背景下,建立了一个新的一般 $K$ 闭合性结果。作为应用,我们推导了各类非交换马氏哈代空间的 $K$ 闭合性结果,解决了兰德里安托阿尼纳提出的一个问题。对这一一般结果的证明,采用了布尔干的方法,在非交换马汀形的框架内,对圆盘上的经典哈代空间进行实插。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信