A Mattila–Sjölin theorem for simplices in low dimensions

IF 1.3 2区 数学 Q1 MATHEMATICS
Eyvindur Ari Palsson, Francisco Romero Acosta
{"title":"A Mattila–Sjölin theorem for simplices in low dimensions","authors":"Eyvindur Ari Palsson, Francisco Romero Acosta","doi":"10.1007/s00208-024-02948-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper we show that if a compact set <span>\\(E \\subset {\\mathbb {R}}^d\\)</span>, <span>\\(d \\ge 3\\)</span>, has Hausdorff dimension greater than <span>\\(\\frac{(4k-1)}{4k}d+\\frac{1}{4}\\)</span> when <span>\\(3 \\le d&lt;\\frac{k(k+3)}{(k-1)}\\)</span> or <span>\\(d- \\frac{1}{k-1}\\)</span> when <span>\\(\\frac{k(k+3)}{(k-1)} \\le d\\)</span>, then the set of congruence class of simplices with vertices in <i>E</i> has nonempty interior. By set of congruence class of simplices with vertices in <i>E</i> we mean </p><span>$$\\begin{aligned} \\Delta _{k}(E) = \\left\\{ \\textbf{t} = \\left( t_{ij} \\right) : |x_i-x_j|=t_{ij}; \\ x_i,x_j \\in E; \\ 0\\le i &lt; j \\le k \\right\\} \\subset {\\mathbb {R}}^{\\frac{k(k+1)}{2}} \\end{aligned}$$</span><p>where <span>\\(2 \\le k &lt;d\\)</span>. This result improves the previous best results in the sense that we now can obtain a Hausdorff dimension threshold which allow us to guarantee that the set of congruence class of triangles formed by triples of points of <i>E</i> has nonempty interior when <span>\\(d=3\\)</span> as well as extending to all simplices. The present work can be thought of as an extension of the Mattila–Sjölin theorem which establishes a non-empty interior for the distance set instead of the set of congruence classes of simplices.\n</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"231 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02948-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we show that if a compact set \(E \subset {\mathbb {R}}^d\), \(d \ge 3\), has Hausdorff dimension greater than \(\frac{(4k-1)}{4k}d+\frac{1}{4}\) when \(3 \le d<\frac{k(k+3)}{(k-1)}\) or \(d- \frac{1}{k-1}\) when \(\frac{k(k+3)}{(k-1)} \le d\), then the set of congruence class of simplices with vertices in E has nonempty interior. By set of congruence class of simplices with vertices in E we mean

$$\begin{aligned} \Delta _{k}(E) = \left\{ \textbf{t} = \left( t_{ij} \right) : |x_i-x_j|=t_{ij}; \ x_i,x_j \in E; \ 0\le i < j \le k \right\} \subset {\mathbb {R}}^{\frac{k(k+1)}{2}} \end{aligned}$$

where \(2 \le k <d\). This result improves the previous best results in the sense that we now can obtain a Hausdorff dimension threshold which allow us to guarantee that the set of congruence class of triangles formed by triples of points of E has nonempty interior when \(d=3\) as well as extending to all simplices. The present work can be thought of as an extension of the Mattila–Sjölin theorem which establishes a non-empty interior for the distance set instead of the set of congruence classes of simplices.

Abstract Image

低维简约的马蒂拉-舍林定理
在本文中,我们证明了如果一个紧凑集(E子集{\mathbb {R}}^d\), \(d \ge 3\), 的 Hausdorff 维度大于 \(\frac{(4k-1)}{4k}d+\frac{1}{4}\) when\(3 \le d<;\或者(d- \frac{1}{k-1}\) when \(\frac{k(k+3)}{(k-1)} \le d\), 那么有顶点在 E 中的单纯形的全等类集合的内部是非空的。我们所说的顶点在 E 中的全等类简约集是指 $$\begin{aligned} (开始{aligned})。\Delta _{k}(E) = \left\{ \textbf{t} = \left( t_{ij} \right) :|x_i-x_j|=t_{ij}; \ x_i,x_j \in E; \ 0\le i < j \le k \right\}\subset {\mathbb {R}}^{frac{k(k+1)}{2}}\end{aligned}$where\(2 \le k <d\).这个结果改进了之前的最佳结果,因为我们现在可以得到一个豪斯多夫维度阈值,它允许我们保证当 \(d=3\) 以及扩展到所有单纯形时,由 E 的点的三元组形成的三角形全等类集合具有非空内部。本研究可以看作是马蒂拉-舍林(Mattila-Sjölin)定理的扩展,它为距离集而不是单纯形的全等类集合建立了非空内部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信