A Novel GAN Architecture Reconstructed Using Bi-LSTM and Style Transfer for PV Temporal Dynamics Simulation

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Xueqian Fu;Chunyu Zhang;Xiurong Zhang;Hongbin Sun
{"title":"A Novel GAN Architecture Reconstructed Using Bi-LSTM and Style Transfer for PV Temporal Dynamics Simulation","authors":"Xueqian Fu;Chunyu Zhang;Xiurong Zhang;Hongbin Sun","doi":"10.1109/TSTE.2024.3429781","DOIUrl":null,"url":null,"abstract":"The stochastic production simulation of photovoltaic (PV) power is crucial for the analysis of power balance in power planning, annual or monthly operational planning, and long-term transactions in the electricity market, especially in power systems with a high share of PVs. To model the uncertainty and temporal characteristics inherent in PV power, this letter introduces the style transfer and innovatively establishes bi-directional long short-term memory generative adversarial networks (GAN). Simulation results confirm the advantages of the proposed GAN over traditional convolutional neural network-based GANs in simulating the diversity and temporal characteristics of PV power.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2826-2829"},"PeriodicalIF":8.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10601515/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The stochastic production simulation of photovoltaic (PV) power is crucial for the analysis of power balance in power planning, annual or monthly operational planning, and long-term transactions in the electricity market, especially in power systems with a high share of PVs. To model the uncertainty and temporal characteristics inherent in PV power, this letter introduces the style transfer and innovatively establishes bi-directional long short-term memory generative adversarial networks (GAN). Simulation results confirm the advantages of the proposed GAN over traditional convolutional neural network-based GANs in simulating the diversity and temporal characteristics of PV power.
利用 Bi-LSTM 和样式转移重构用于光伏时动态模拟的新型 GAN 架构
光伏(PV)电力的随机生产模拟对于电力规划中的电力平衡分析、年度或月度运营规划以及电力市场中的长期交易至关重要,尤其是在光伏占比较高的电力系统中。为模拟光伏发电固有的不确定性和时间特性,本文引入了样式转移,并创新性地建立了双向长短期记忆生成式对抗网络(GAN)。仿真结果证实,与传统的基于卷积神经网络的 GAN 相比,所提出的 GAN 在模拟光伏发电的多样性和时间特性方面更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信