Model-Free Fast Frequency Support of Wind Farms for Tracking Optimal Frequency Trajectory

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Yubo Zhang;Songhao Yang;Zhiguo Hao;Baohui Zhang
{"title":"Model-Free Fast Frequency Support of Wind Farms for Tracking Optimal Frequency Trajectory","authors":"Yubo Zhang;Songhao Yang;Zhiguo Hao;Baohui Zhang","doi":"10.1109/TSTE.2024.3430972","DOIUrl":null,"url":null,"abstract":"The fast frequency support (FFS) towards frequency trajectory optimization provides a system view for the frequency regulation of wind farms (WFs). However, the existing frequency trajectory optimization-based FFS generally relies on the accurate governor dynamics model of synchronous generators (SGs), which aggrandizes the difficulty of controller implementation. In this paper, a proportional-integral (PI) based FFS of WFs is designed for tracking the optimal frequency trajectory, which gets rid of the dependence on the governor model. Firstly, the prototypical PI-based FFS of WFs is proposed and its feasibility for tracking the optimal frequency trajectory is analyzed and demonstrated. Then, based on the “frequency-RoCoF” form of the optimal frequency trajectory, a more practical PI controller is constructed, avoiding the time dependence of the prototypical PI controller. Besides, an adaptive gain associated with PI parameters is designed for multi-WF coordination. Finally, the validity of the proposed method is verified in both the single-WF system and the multi-WF system.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2638-2650"},"PeriodicalIF":8.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10605103/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The fast frequency support (FFS) towards frequency trajectory optimization provides a system view for the frequency regulation of wind farms (WFs). However, the existing frequency trajectory optimization-based FFS generally relies on the accurate governor dynamics model of synchronous generators (SGs), which aggrandizes the difficulty of controller implementation. In this paper, a proportional-integral (PI) based FFS of WFs is designed for tracking the optimal frequency trajectory, which gets rid of the dependence on the governor model. Firstly, the prototypical PI-based FFS of WFs is proposed and its feasibility for tracking the optimal frequency trajectory is analyzed and demonstrated. Then, based on the “frequency-RoCoF” form of the optimal frequency trajectory, a more practical PI controller is constructed, avoiding the time dependence of the prototypical PI controller. Besides, an adaptive gain associated with PI parameters is designed for multi-WF coordination. Finally, the validity of the proposed method is verified in both the single-WF system and the multi-WF system.
风电场的无模型快速频率支持以跟踪最佳频率轨迹
面向频率轨迹优化的快速频率支持(FFS)为风电场(WFs)的频率调节提供了系统视图。然而,现有的基于频率轨迹优化的 FFS 通常依赖于同步发电机 (SG) 的精确调速器动力学模型,这增加了控制器实现的难度。本文设计了一种基于比例积分(PI)的风力发电机 FFS,用于跟踪最优频率轨迹,摆脱了对调速器模型的依赖。首先,提出了基于 PI 的 WFs FFS 原型,并分析和论证了其跟踪最佳频率轨迹的可行性。然后,根据最佳频率轨迹的 "频率-RoCoF "形式,构建了一个更实用的 PI 控制器,避免了原型 PI 控制器的时间依赖性。此外,还为多 WF 协调设计了与 PI 参数相关的自适应增益。最后,在单 WF 系统和多 WF 系统中验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信