Normalized Solutions for Schrödinger–Poisson Systems Involving Critical Sobolev Exponents

Qian Gao, Xiaoming He
{"title":"Normalized Solutions for Schrödinger–Poisson Systems Involving Critical Sobolev Exponents","authors":"Qian Gao, Xiaoming He","doi":"10.1007/s12220-024-01744-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the existence and properties of ground states for the Schrödinger–Poisson system with combined power nonlinearities </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u +\\gamma \\phi u= \\lambda u+\\mu |u|^{q-2}u+|u|^{4}u,&amp;{}~~ \\text{ in }~{\\mathbb {R}}^3,\\\\ -\\Delta \\phi =u^2,&amp;{}~~ \\text{ in }~{\\mathbb {R}}^3,\\end{array}\\right. } \\end{aligned}$$</span><p>having prescribed mass </p><span>$$\\begin{aligned} \\int _{{\\mathbb {R}}^3} |u|^2dx=a^2, \\end{aligned}$$</span><p>in the <i>Sobolev critical case</i>. Here <span>\\( a&gt;0\\)</span>, and <span>\\(\\gamma &gt;0\\)</span>, <span>\\(\\mu &gt;0\\)</span> are parameters, <span>\\(\\lambda \\in {\\mathbb {R}}\\)</span> is an undetermined parameter. By using Jeanjean’ theory, Pohozaev manifold method and Brezis and Nirenberg’s technique to overcome the lack of compactness, we prove several existence results under the <span>\\(L^2\\)</span>-subcritical, <span>\\(L^2\\)</span>-critical and <span>\\(L^2\\)</span>-supercritical perturbation <span>\\(\\mu |u|^{q-2}u\\)</span>, under different assumptions imposed on the parameters <span>\\(\\gamma ,\\mu \\)</span> and the mass <i>a</i>, respectively. This study can be considered as a counterpart of the Brezis-Nirenberg problem in the context of normalized solutions of a Sobolev critical Schrödinger–Poisson problem perturbed with a subcritical term in the whole space <span>\\({\\mathbb {R}}^3\\)</span>.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01744-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the existence and properties of ground states for the Schrödinger–Poisson system with combined power nonlinearities

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u +\gamma \phi u= \lambda u+\mu |u|^{q-2}u+|u|^{4}u,&{}~~ \text{ in }~{\mathbb {R}}^3,\\ -\Delta \phi =u^2,&{}~~ \text{ in }~{\mathbb {R}}^3,\end{array}\right. } \end{aligned}$$

having prescribed mass

$$\begin{aligned} \int _{{\mathbb {R}}^3} |u|^2dx=a^2, \end{aligned}$$

in the Sobolev critical case. Here \( a>0\), and \(\gamma >0\), \(\mu >0\) are parameters, \(\lambda \in {\mathbb {R}}\) is an undetermined parameter. By using Jeanjean’ theory, Pohozaev manifold method and Brezis and Nirenberg’s technique to overcome the lack of compactness, we prove several existence results under the \(L^2\)-subcritical, \(L^2\)-critical and \(L^2\)-supercritical perturbation \(\mu |u|^{q-2}u\), under different assumptions imposed on the parameters \(\gamma ,\mu \) and the mass a, respectively. This study can be considered as a counterpart of the Brezis-Nirenberg problem in the context of normalized solutions of a Sobolev critical Schrödinger–Poisson problem perturbed with a subcritical term in the whole space \({\mathbb {R}}^3\).

涉及临界索波列夫指数的薛定谔-泊松系统的归一化解决方案
本文关注的是具有组合功率非线性的薛定谔-泊松系统的基态的存在性和性质 $$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u +\gamma \phi u= \lambda u+\mu |u|^{q-2}u+|u|^{4}u,&;{}~~ \text{ in }~{\mathbb {R}}^3,\\ -\Delta \phi =u^2,&{}~~ \text{ in }~{\mathbb {R}}^3,\end{array}\right.}\有规定质量的 $$\begin{aligned}\int _{{{mathbb {R}}^3}|u|^2dx=a^2, \end{aligned}$$在索波列夫临界情况下。这里\( a>0\), and\(\gamma >0\),\(\mu >0\) 都是参数,\(\lambda \in {\mathbb {R}}\)是一个未确定的参数。通过使用 Jeanjean 理论、Pohozaev 流形方法以及 Brezis 和 Nirenberg 的技术来克服紧凑性的不足,我们证明了 \(L^2\)-subcritical 下的几个存在性结果、\(L^2\)-临界和(L^2\)-超临界扰动 \(\mu|u|^{q-2}u\)下的存在性结果。这项研究可以看作是布雷齐斯-尼伦堡问题的一个对应问题,即在整个空间\({\mathbb {R}}^3\) 中用一个次临界项扰动的索波列夫临界薛定谔-泊松问题的归一化解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信