{"title":"Firehose instability in heat-conducting solar wind plasmas including FLR corrections and electrical resistivity","authors":"Ram Prasad Prajapati","doi":"10.1209/0295-5075/ad59c0","DOIUrl":null,"url":null,"abstract":"The effects of finite Larmor radius (FLR) corrections and heat-flux vector are studied on the pressure anisotropy-driven firehose instability in finitely conducting solar wind plasmas described by the double-adiabatic Chew, Goldberger and Low (CGL) fluid theory. The fluid description of collisionless plasmas is governed through modified adiabatic equations due to the heat-flux vector and finite ion Larmor radius corrections. The analytical dispersion relation of the firehose instability has been derived using the normal mode analysis and discussed in the solar wind plasmas. In the transverse mode, the dispersion relation of the Alfvénic mode is modified due to electrical resistivity and FLR corrections. In the longitudinal mode, the effects of the heat-flux parameter and electrical resistivity are observed separately. The dispersion relation of the firehose mode is modified due to the combined effects of FLR corrections and electrical resistivity. The graphical illustrations show that finite electrical resistivity and ion Larmor frequency destabilize the growth rate of the firehose instability. The results are useful for analyzing the solar mission data to study the firehose instability in the solar wind plasmas.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"36 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad59c0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of finite Larmor radius (FLR) corrections and heat-flux vector are studied on the pressure anisotropy-driven firehose instability in finitely conducting solar wind plasmas described by the double-adiabatic Chew, Goldberger and Low (CGL) fluid theory. The fluid description of collisionless plasmas is governed through modified adiabatic equations due to the heat-flux vector and finite ion Larmor radius corrections. The analytical dispersion relation of the firehose instability has been derived using the normal mode analysis and discussed in the solar wind plasmas. In the transverse mode, the dispersion relation of the Alfvénic mode is modified due to electrical resistivity and FLR corrections. In the longitudinal mode, the effects of the heat-flux parameter and electrical resistivity are observed separately. The dispersion relation of the firehose mode is modified due to the combined effects of FLR corrections and electrical resistivity. The graphical illustrations show that finite electrical resistivity and ion Larmor frequency destabilize the growth rate of the firehose instability. The results are useful for analyzing the solar mission data to study the firehose instability in the solar wind plasmas.
期刊介绍:
General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology.
Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate).
EPL also publishes Comments on Letters previously published in the Journal.