Bridging Wright-Fisher and Moran models

Arthur Alexandre, Alia Abbara, Cecilia Fruet, Claude Loverdo, Anne-Florence Bitbol
{"title":"Bridging Wright-Fisher and Moran models","authors":"Arthur Alexandre, Alia Abbara, Cecilia Fruet, Claude Loverdo, Anne-Florence Bitbol","doi":"arxiv-2407.12560","DOIUrl":null,"url":null,"abstract":"The Wright-Fisher model and the Moran model are both widely used in\npopulation genetics. They describe the time evolution of the frequency of an\nallele in a well-mixed population with fixed size. We propose a simple and\ntractable model which bridges the Wright-Fisher and the Moran descriptions. We\nassume that a fixed fraction of the population is updated at each discrete time\nstep. In this model, we determine the fixation probability of a mutant in the\ndiffusion approximation, as well as the effective population size. We\ngeneralize our model, first by taking into account fluctuating updated\nfractions or individual lifetimes, and then by incorporating selection on the\nlifetime as well as on the reproductive fitness.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Wright-Fisher model and the Moran model are both widely used in population genetics. They describe the time evolution of the frequency of an allele in a well-mixed population with fixed size. We propose a simple and tractable model which bridges the Wright-Fisher and the Moran descriptions. We assume that a fixed fraction of the population is updated at each discrete time step. In this model, we determine the fixation probability of a mutant in the diffusion approximation, as well as the effective population size. We generalize our model, first by taking into account fluctuating updated fractions or individual lifetimes, and then by incorporating selection on the lifetime as well as on the reproductive fitness.
连接赖特-费舍模型和莫兰模型
赖特-费舍模型和莫兰模型都被广泛应用于种群遗传学。它们描述了一个具有固定规模的混合良好种群中类群频率的时间演化。我们提出了一个简单而实用的模型,它是赖特-费舍模型和莫兰模型的桥梁。我们假定,在每个离散的时间步中,种群的固定部分会被更新。在这个模型中,我们确定了扩散近似中突变体的固定概率以及有效种群规模。我们对模型进行了归纳,首先考虑了更新部分或个体生命周期的波动,然后加入了对生命周期和生殖适应性的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信