Bourgain–Brezis–Mironescu-Type Characterization of Inhomogeneous Ball Banach Sobolev Spaces on Extension Domains

Chenfeng Zhu, Dachun Yang, Wen Yuan
{"title":"Bourgain–Brezis–Mironescu-Type Characterization of Inhomogeneous Ball Banach Sobolev Spaces on Extension Domains","authors":"Chenfeng Zhu, Dachun Yang, Wen Yuan","doi":"10.1007/s12220-024-01737-z","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\{\\rho _\\nu \\}_{\\nu \\in (0,\\nu _0)}\\)</span> with <span>\\(\\nu _0\\in (0,\\infty )\\)</span> be a <span>\\(\\nu _0\\)</span>-radial decreasing approximation of the identity on <span>\\(\\mathbb {R}^n\\)</span>, <span>\\(X(\\mathbb {R}^n)\\)</span> a ball Banach function space satisfying some extra mild assumptions, and <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span> a <span>\\(W^{1,X}\\)</span>-extension domain. In this article, the authors prove that, for any <i>f</i> belonging to the inhomogeneous ball Banach Sobolev space <span>\\({W}^{1,X}(\\Omega )\\)</span>, </p><span>$$\\begin{aligned} \\lim _{\\nu \\rightarrow 0^+} \\left\\| \\left[ \\int _\\Omega \\frac{|f(\\cdot )-f(y)|^p}{ |\\cdot -y|^p}\\rho _\\nu (|\\cdot -y|)\\,\\textrm{d}y \\right] ^\\frac{1}{p}\\right\\| _{X(\\Omega )}^p =\\frac{2\\pi ^{\\frac{n-1}{2}}\\Gamma (\\frac{p+1}{2})}{\\Gamma (\\frac{p+n}{2})} \\left\\| \\,\\left| \\nabla f\\right| \\,\\right\\| _{X(\\Omega )}^p, \\end{aligned}$$</span><p>where <span>\\(\\Gamma \\)</span> is the Gamma function and <span>\\(p\\in [1,\\infty )\\)</span> is related to <span>\\(X(\\mathbb {R}^n)\\)</span>. Using this asymptotics, the authors further establish a characterization of <span>\\(W^{1,X}(\\Omega )\\)</span> in terms of the above limit. To achieve these, the authors develop a machinery via using a method of the extrapolation and some recently found profound properties of <span>\\(W^{1,X}(\\mathbb {R}^n)\\)</span> to overcome those difficulties caused by that the norm of <span>\\(X(\\mathbb {R}^n)\\)</span> has no explicit expression and <span>\\(X(\\mathbb {R}^n)\\)</span> might not be translation invariant. This characterization has a wide range of generality and can be applied to various Sobolev-type spaces, such as Morrey [Bourgain–Morrey-type, weighted (or mixed-norm or variable), local (or global) generalized Herz, Lorentz, and Orlicz (or Orlicz-slice)] Sobolev spaces, which are all new. Particularly, when <span>\\(X(\\Omega ):=L^p(\\Omega )\\)</span> with <span>\\(p\\in (1,\\infty )\\)</span>, this characterization coincides with the celebrated results of J. Bourgain, H. Brezis, and P. Mironescu in 2001 and H. Brezis in 2002; moreover, this characterization is also new even when <span>\\(X(\\Omega ):=L^q(\\Omega )\\)</span> with both <span>\\(q\\in (1,\\infty )\\)</span> and <span>\\(p\\in [1,q)\\cup (q,\\frac{n}{n-1}]\\)</span>. In addition, the authors give several specific examples of <span>\\(W^{1,X}\\)</span>-extension domains as well as <span>\\(\\dot{W}^{1,X}\\)</span>-extension domains.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01737-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\{\rho _\nu \}_{\nu \in (0,\nu _0)}\) with \(\nu _0\in (0,\infty )\) be a \(\nu _0\)-radial decreasing approximation of the identity on \(\mathbb {R}^n\), \(X(\mathbb {R}^n)\) a ball Banach function space satisfying some extra mild assumptions, and \(\Omega \subset \mathbb {R}^n\) a \(W^{1,X}\)-extension domain. In this article, the authors prove that, for any f belonging to the inhomogeneous ball Banach Sobolev space \({W}^{1,X}(\Omega )\),

$$\begin{aligned} \lim _{\nu \rightarrow 0^+} \left\| \left[ \int _\Omega \frac{|f(\cdot )-f(y)|^p}{ |\cdot -y|^p}\rho _\nu (|\cdot -y|)\,\textrm{d}y \right] ^\frac{1}{p}\right\| _{X(\Omega )}^p =\frac{2\pi ^{\frac{n-1}{2}}\Gamma (\frac{p+1}{2})}{\Gamma (\frac{p+n}{2})} \left\| \,\left| \nabla f\right| \,\right\| _{X(\Omega )}^p, \end{aligned}$$

where \(\Gamma \) is the Gamma function and \(p\in [1,\infty )\) is related to \(X(\mathbb {R}^n)\). Using this asymptotics, the authors further establish a characterization of \(W^{1,X}(\Omega )\) in terms of the above limit. To achieve these, the authors develop a machinery via using a method of the extrapolation and some recently found profound properties of \(W^{1,X}(\mathbb {R}^n)\) to overcome those difficulties caused by that the norm of \(X(\mathbb {R}^n)\) has no explicit expression and \(X(\mathbb {R}^n)\) might not be translation invariant. This characterization has a wide range of generality and can be applied to various Sobolev-type spaces, such as Morrey [Bourgain–Morrey-type, weighted (or mixed-norm or variable), local (or global) generalized Herz, Lorentz, and Orlicz (or Orlicz-slice)] Sobolev spaces, which are all new. Particularly, when \(X(\Omega ):=L^p(\Omega )\) with \(p\in (1,\infty )\), this characterization coincides with the celebrated results of J. Bourgain, H. Brezis, and P. Mironescu in 2001 and H. Brezis in 2002; moreover, this characterization is also new even when \(X(\Omega ):=L^q(\Omega )\) with both \(q\in (1,\infty )\) and \(p\in [1,q)\cup (q,\frac{n}{n-1}]\). In addition, the authors give several specific examples of \(W^{1,X}\)-extension domains as well as \(\dot{W}^{1,X}\)-extension domains.

扩展域上非均质球巴纳赫索波列夫空间的布尔干-布雷齐斯-米罗内斯库类型特征描述
让 \(\{rho _\nu \}_{\nu \in (0,\nu _0)}\) with \(\nu _0\in (0,\infty )\) 是 \(\nu _0\)-radial decreasing approximation of the identity on \(\mathbb {R}^n\)、\X(\mathbb {R}^n)是一个满足一些额外温和假设的球巴纳赫函数空间,而(\Omega \subset \mathbb {R}^n\)是一个\(W^{1,X}\)-扩展域。在这篇文章中,作者证明了,对于任何属于非均质球巴纳赫 Sobolev 空间 \({W}^{1,X}(\Omega )\) 的 f,$$\begin{aligned}(开始{aligned})。\lim _{\nu \rightarrow 0^+} \left\| \left[ \int _\Omega \frac{|f(\cdot )-f(y)|^p}{ |\cdot -y|^p}\rho _\nu (|\cdot -y|)\,\textrm{d}y \right].^\frac{1}{p}\right\| _{X(\Omega )}^p =\frac{2\pi ^{\frac{n-1}{2}}\Gamma (\frac{p+1}{2})}{Gamma (\frac{p+n}{2})}\left\| \,\left| \nabla f\right| \,\right\| _{X(\Omega )}^p, \end{aligned}$$ 其中 \(\Gamma \) 是伽马函数,并且 \(p\in [1,\infty )\) 与 \(X(\mathbb {R}^n)\) 相关。利用这种渐近性,作者进一步根据上述极限建立了 \(W^{1,X}(\Omega )\) 的特征。为了实现这些,作者通过使用外推法和一些最近发现的 \(W^{1,X}(\mathbb {R}^n)\) 的深刻性质开发了一种机制,以克服由于 \(X(\mathbb {R}^n)\) 的规范没有明确表达和 \(X(\mathbb {R}^n)\) 可能不是平移不变的而造成的困难。这一特征具有广泛的通用性,可应用于各种索波列夫类型空间,如莫雷[布尔干-莫雷类型、加权(或混合正则或变量)、局部(或全局)广义赫兹、洛伦兹和奥尔利茨(或奥尔利茨-片)]空间。索波列夫空间,这些都是新的内容。特别是,当 \(X(\Omega ):=L^p(\Omega )\) with \(p\in (1,\infty )\) 时,这一特征与 J. Bourgain、H. Brezis 和 P. Mironescu 在 2001 年以及 H. Brezis 在 2002 年的著名结果不谋而合。此外,即使当 \(X(\Omega ):=L^q(\Omega )\) 同时具有 \(q\in (1,\infty )\) 和 \(p\in [1,q)\cup (q,\frac{n}{n-1}]\) 时,这个特征也是新的。此外,作者还给出了几个关于 \(W^{1,X}\)- 扩展域以及 \(\dot{W}^{1,X}\)- 扩展域的具体例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信