Meng-Yao Liu, Wei-Dong Li, Xing-Tao Huang, Yao Zhang, Tao Lin, Ye Yuan
{"title":"Simulation and reconstruction of particle trajectories in the CEPC drift chamber","authors":"Meng-Yao Liu, Wei-Dong Li, Xing-Tao Huang, Yao Zhang, Tao Lin, Ye Yuan","doi":"10.1007/s41365-024-01497-z","DOIUrl":null,"url":null,"abstract":"<p>The circular electron-positron collider (CEPC) is designed to precisely measure the properties of the Higgs boson, study electroweak interactions at the Z-boson peak, and search for new physics beyond the Standard Model. As a component of the <span>\\(4^{\\text {th}}\\)</span> conceptual CEPC detector, the drift chamber facilitates the measurement of charged particles. This study implemented a Geant4-based simulation and track reconstruction for the drift chamber. For the simulation, detector construction and response were implemented and added to the CEPC simulation chain. The development of track reconstruction involves track finding using the combinatorial Kalman filter method and track fitting using the tool of GenFit. Using the simulated data, the tracking performance was studied. The results showed that both the reconstruction resolution and tracking efficiency satisfied the requirements of the CEPC experiment.</p>","PeriodicalId":19177,"journal":{"name":"Nuclear Science and Techniques","volume":"43 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Techniques","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s41365-024-01497-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The circular electron-positron collider (CEPC) is designed to precisely measure the properties of the Higgs boson, study electroweak interactions at the Z-boson peak, and search for new physics beyond the Standard Model. As a component of the \(4^{\text {th}}\) conceptual CEPC detector, the drift chamber facilitates the measurement of charged particles. This study implemented a Geant4-based simulation and track reconstruction for the drift chamber. For the simulation, detector construction and response were implemented and added to the CEPC simulation chain. The development of track reconstruction involves track finding using the combinatorial Kalman filter method and track fitting using the tool of GenFit. Using the simulated data, the tracking performance was studied. The results showed that both the reconstruction resolution and tracking efficiency satisfied the requirements of the CEPC experiment.
期刊介绍:
Nuclear Science and Techniques (NST) reports scientific findings, technical advances and important results in the fields of nuclear science and techniques. The aim of this periodical is to stimulate cross-fertilization of knowledge among scientists and engineers working in the fields of nuclear research.
Scope covers the following subjects:
• Synchrotron radiation applications, beamline technology;
• Accelerator, ray technology and applications;
• Nuclear chemistry, radiochemistry, radiopharmaceuticals, nuclear medicine;
• Nuclear electronics and instrumentation;
• Nuclear physics and interdisciplinary research;
• Nuclear energy science and engineering.