{"title":"Dynamics of Organic Matter Transport, Storage, and Processing in a Non-perennial Mediterranean River Network","authors":"Oriana Llanos-Paez, Junyu Qi, Nils Gutierrez, Miriam Colls, Sergi Sabater, Vicenç Acuña","doi":"10.1007/s10021-024-00910-3","DOIUrl":null,"url":null,"abstract":"<p>Freshwater ecosystems play a key role in the global carbon cycle by collecting, transporting, and processing a significant portion of global organic carbon. These processes can be disrupted in non-perennial rivers due to their changing hydrological patterns. We investigated how environmental factors influence organic matter dynamics in the Algars, a Mediterranean non-perennial river basin in the North-East Iberian Peninsula. We conducted seasonal sampling in 16 sites across the river network, collecting samples for (i) storage of benthic organic matter, (ii) transport of dissolved organic carbon and particulate organic matter, and (iii) organic matter processing via aerobic respiration in sediments (Raz–Rru method). We observed pronounced spatial and temporal fluctuations in organic matter processes, especially during distinct periods like summer and autumn. Consistent seasonal patterns of organic matter transport showed a remarkable longitudinal increase downstream, similar to observed aerobic respiration in sediments. Notably, high-flow events doubled observed seasonal transport (mean DOC load: 2344 ± 735 kg/day). Irregular spatial storage patterns between dry and wet channel sections were related to land use and flow intermittency. Notably, storage in dry channel sections was generally ten times higher than wet sections. Our study emphasizes the intricate influence of specific environmental variables on organic matter processes, within different organic matter fractions (for example, coarse and dissolved organic matter). Frequency of non-flow events, seasonal hydrological changes, and land use predominantly govern organic matter dynamics in the Algars basin. Understanding organic carbon dynamics in non-perennial systems will help estimate the impact of hydrological alterations associated with global change on river systems.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10021-024-00910-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Freshwater ecosystems play a key role in the global carbon cycle by collecting, transporting, and processing a significant portion of global organic carbon. These processes can be disrupted in non-perennial rivers due to their changing hydrological patterns. We investigated how environmental factors influence organic matter dynamics in the Algars, a Mediterranean non-perennial river basin in the North-East Iberian Peninsula. We conducted seasonal sampling in 16 sites across the river network, collecting samples for (i) storage of benthic organic matter, (ii) transport of dissolved organic carbon and particulate organic matter, and (iii) organic matter processing via aerobic respiration in sediments (Raz–Rru method). We observed pronounced spatial and temporal fluctuations in organic matter processes, especially during distinct periods like summer and autumn. Consistent seasonal patterns of organic matter transport showed a remarkable longitudinal increase downstream, similar to observed aerobic respiration in sediments. Notably, high-flow events doubled observed seasonal transport (mean DOC load: 2344 ± 735 kg/day). Irregular spatial storage patterns between dry and wet channel sections were related to land use and flow intermittency. Notably, storage in dry channel sections was generally ten times higher than wet sections. Our study emphasizes the intricate influence of specific environmental variables on organic matter processes, within different organic matter fractions (for example, coarse and dissolved organic matter). Frequency of non-flow events, seasonal hydrological changes, and land use predominantly govern organic matter dynamics in the Algars basin. Understanding organic carbon dynamics in non-perennial systems will help estimate the impact of hydrological alterations associated with global change on river systems.