Causal network construction based on KICA-ECCM for root cause diagnosis of industrial processes

Yayin He, Xiangshun Li
{"title":"Causal network construction based on KICA-ECCM for root cause diagnosis of industrial processes","authors":"Yayin He, Xiangshun Li","doi":"10.1007/s10586-024-04663-5","DOIUrl":null,"url":null,"abstract":"<p>Root cause diagnosis is able to find the propagation path of faults timely when the fault occurs. Therefore, it is of key significance in the maintenance and fault diagnosis of industrial systems. A commonly used method for root cause diagnosis is causal analysis method. In this work, a causal analysis method Extended Convergent Cross Mapping (ECCM) algorithm is used for root cause diagnosis of industry, however, it has difficulties in dealing with large amounts of steady state data and obtaining accurate propagation paths. Therefore, a causal analysis method based on Kernel Independent Component Analysis (KICA) and ECCM is proposed in this study to deal with the above problems. First, the KICA algorithm is used to detect faults to get the transition process data. Second, the ECCM algorithm is used to construct causal relationship among variables based on the transition process data to construct the fault propagation path diagram. Finally, the effectiveness of the proposed KICA-ECCM algorithm is tested by using the Tennessee Eastman Process and Industrial Process Control Test Facility platform. Compared with the ECCM and GC algorithm, the KICA-ECCM algorithm performs better in terms of accuracy and efficiency.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04663-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Root cause diagnosis is able to find the propagation path of faults timely when the fault occurs. Therefore, it is of key significance in the maintenance and fault diagnosis of industrial systems. A commonly used method for root cause diagnosis is causal analysis method. In this work, a causal analysis method Extended Convergent Cross Mapping (ECCM) algorithm is used for root cause diagnosis of industry, however, it has difficulties in dealing with large amounts of steady state data and obtaining accurate propagation paths. Therefore, a causal analysis method based on Kernel Independent Component Analysis (KICA) and ECCM is proposed in this study to deal with the above problems. First, the KICA algorithm is used to detect faults to get the transition process data. Second, the ECCM algorithm is used to construct causal relationship among variables based on the transition process data to construct the fault propagation path diagram. Finally, the effectiveness of the proposed KICA-ECCM algorithm is tested by using the Tennessee Eastman Process and Industrial Process Control Test Facility platform. Compared with the ECCM and GC algorithm, the KICA-ECCM algorithm performs better in terms of accuracy and efficiency.

Abstract Image

基于 KICA-ECCM 的因果网络构建,用于工业流程的根本原因诊断
根源诊断能够在故障发生时及时发现故障的传播路径。因此,它对工业系统的维护和故障诊断具有重要意义。常用的根源诊断方法是因果分析法。在这项工作中,因果分析方法扩展聚合交叉映射(ECCM)算法被用于工业系统的根本原因诊断,但它在处理大量稳态数据和获取准确的传播路径方面存在困难。因此,本研究提出了一种基于核独立分量分析(KICA)和 ECCM 的因果分析方法来解决上述问题。首先,使用 KICA 算法检测故障,以获得过渡过程数据。其次,利用 ECCM 算法根据过渡过程数据构建变量之间的因果关系,从而构建故障传播路径图。最后,利用田纳西州伊士曼过程和工业过程控制测试设施平台测试了所提出的 KICA-ECCM 算法的有效性。与 ECCM 和 GC 算法相比,KICA-ECCM 算法在准确性和效率方面表现更佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信