Boli Zheng, Yi Chen, Chaofan Wang, Ali Asghar Heidari, Lei Liu, Huiling Chen, Xiaowei Chen, Peirong Chen
{"title":"Stochastic biogeography-based learning improved RIME algorithm: application to image segmentation of lupus nephritis","authors":"Boli Zheng, Yi Chen, Chaofan Wang, Ali Asghar Heidari, Lei Liu, Huiling Chen, Xiaowei Chen, Peirong Chen","doi":"10.1007/s10586-024-04628-8","DOIUrl":null,"url":null,"abstract":"<p>Lupus nephritis (LN) is the most common symptom of systemic lupus erythematosus, emphasizing its importance in the field of medicine. The growing frequency of LN has increased the need for effective image segmentation algorithms. With the increasing prevalence of LN, the demand for efficient image segmentation techniques has grown. To enhance the efficiency of image segmentation of LN, many researchers employ a methodology that integrates multi-threshold image segmentation (MTIS) with metaheuristic algorithms (MAs). However, conventional MAs-based MTIS methods tend to converge towards local optima and have slow convergence rates, resulting in poor segmentation results within a limited iteration number. To address these challenges, this study proposes an advanced optimization algorithm termed Biogeography-based Learning Rime Optimization Algorithm (BLRIME) and integrates it with the MTIS approach for LN image segmentation. MTIS employs a non-local means 2D histogram to gather image information and uses 2D Renyi’s entropy as the fitness function. BLRIME builds upon the foundation of the RIME algorithm, incorporating two significant strategies. Firstly, the introduction of piecewise chaotic mapping (PCM) ameliorates the quality of the initial solution provided by the algorithm. Secondly, a stochastic biogeography-based learning strategy (SBLS) prevents the RIME algorithm from falling into the local optimum early. SBLS is proposed by this study based on the biogeography-based learning strategy. In order to assess the efficacy of the BLRIME, this paper devises a series of experiments to compare it with similar algorithms presented at IEEE CEC 2017. Experimental studies have been conducted to provide empirical evidence demonstrating the superior rates of convergence and precision achieved by BLRIME. Subsequently, the BLRIME-based MTIS algorithm is employed to segment the LN images compared to other peer algorithms. Furthermore, the peak signal-to-noise ratio, feature similarity index, and structural similarity index are utilized as evaluation metrics to assess the image segmentation outcomes. The experimental results prove that BLRIME demonstrates superior global search capabilities, resulting in remarkable outcomes in the segmentation of LN images.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"167 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04628-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lupus nephritis (LN) is the most common symptom of systemic lupus erythematosus, emphasizing its importance in the field of medicine. The growing frequency of LN has increased the need for effective image segmentation algorithms. With the increasing prevalence of LN, the demand for efficient image segmentation techniques has grown. To enhance the efficiency of image segmentation of LN, many researchers employ a methodology that integrates multi-threshold image segmentation (MTIS) with metaheuristic algorithms (MAs). However, conventional MAs-based MTIS methods tend to converge towards local optima and have slow convergence rates, resulting in poor segmentation results within a limited iteration number. To address these challenges, this study proposes an advanced optimization algorithm termed Biogeography-based Learning Rime Optimization Algorithm (BLRIME) and integrates it with the MTIS approach for LN image segmentation. MTIS employs a non-local means 2D histogram to gather image information and uses 2D Renyi’s entropy as the fitness function. BLRIME builds upon the foundation of the RIME algorithm, incorporating two significant strategies. Firstly, the introduction of piecewise chaotic mapping (PCM) ameliorates the quality of the initial solution provided by the algorithm. Secondly, a stochastic biogeography-based learning strategy (SBLS) prevents the RIME algorithm from falling into the local optimum early. SBLS is proposed by this study based on the biogeography-based learning strategy. In order to assess the efficacy of the BLRIME, this paper devises a series of experiments to compare it with similar algorithms presented at IEEE CEC 2017. Experimental studies have been conducted to provide empirical evidence demonstrating the superior rates of convergence and precision achieved by BLRIME. Subsequently, the BLRIME-based MTIS algorithm is employed to segment the LN images compared to other peer algorithms. Furthermore, the peak signal-to-noise ratio, feature similarity index, and structural similarity index are utilized as evaluation metrics to assess the image segmentation outcomes. The experimental results prove that BLRIME demonstrates superior global search capabilities, resulting in remarkable outcomes in the segmentation of LN images.