Dallas Albritton, Scott Armstrong, Jean-Christophe Mourrat, Matthew Novack
{"title":"Variational methods for the kinetic Fokker–Planck equation","authors":"Dallas Albritton, Scott Armstrong, Jean-Christophe Mourrat, Matthew Novack","doi":"10.2140/apde.2024.17.1953","DOIUrl":null,"url":null,"abstract":"<p>We develop a functional-analytic approach to the study of the Kramers and kinetic Fokker–Planck equations which parallels the classical <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math> theory of uniformly elliptic equations. In particular, we identify a function space analogous to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math> and develop a well-posedness theory for weak solutions in this space. In the case of a conservative force, we identify the weak solution as the minimizer of a uniformly convex functional. We prove new functional inequalities of Poincaré- and Hörmander-type and combine them with basic energy estimates (analogous to the Caccioppoli inequality) in an iteration procedure to obtain the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>C</mi></mrow><mrow><mi>∞</mi></mrow></msup></math> regularity of weak solutions. We also use the Poincaré-type inequality to give an elementary proof of the exponential convergence to equilibrium for solutions of the kinetic Fokker–Planck equation which mirrors the classic dissipative estimate for the heat equation. Finally, we prove enhanced dissipation in a weakly collisional limit. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1953","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a functional-analytic approach to the study of the Kramers and kinetic Fokker–Planck equations which parallels the classical theory of uniformly elliptic equations. In particular, we identify a function space analogous to and develop a well-posedness theory for weak solutions in this space. In the case of a conservative force, we identify the weak solution as the minimizer of a uniformly convex functional. We prove new functional inequalities of Poincaré- and Hörmander-type and combine them with basic energy estimates (analogous to the Caccioppoli inequality) in an iteration procedure to obtain the regularity of weak solutions. We also use the Poincaré-type inequality to give an elementary proof of the exponential convergence to equilibrium for solutions of the kinetic Fokker–Planck equation which mirrors the classic dissipative estimate for the heat equation. Finally, we prove enhanced dissipation in a weakly collisional limit.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.