Obstructions to homotopy invariance of loop coproduct via parametrised fixed-point theory

Lea Kenigsberg, Noah Porcelli
{"title":"Obstructions to homotopy invariance of loop coproduct via parametrised fixed-point theory","authors":"Lea Kenigsberg, Noah Porcelli","doi":"arxiv-2407.13662","DOIUrl":null,"url":null,"abstract":"Given $f: M \\to N$ a homotopy equivalence of compact manifolds with boundary,\nwe use a construction of Geoghegan and Nicas to define its Reidemeister trace\n$[T] \\in \\pi_1^{st}(\\mathcal{L} N, N)$. We realize the Goresky-Hingston\ncoproduct as a map of spectra, and show that the failure of $f$ to entwine the\nspectral coproducts can be characterized by Chas-Sullivan multiplication with\n$[T]$. In particular, when $f$ is a simple homotopy equivalence, the spectral\ncoproducts of $M$ and $N$ agree.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given $f: M \to N$ a homotopy equivalence of compact manifolds with boundary, we use a construction of Geoghegan and Nicas to define its Reidemeister trace $[T] \in \pi_1^{st}(\mathcal{L} N, N)$. We realize the Goresky-Hingston coproduct as a map of spectra, and show that the failure of $f$ to entwine the spectral coproducts can be characterized by Chas-Sullivan multiplication with $[T]$. In particular, when $f$ is a simple homotopy equivalence, the spectral coproducts of $M$ and $N$ agree.
通过参数化定点理论实现环共积同调不变性的障碍
给定 $f:给定 $f: M \to N$ 是有边界的紧凑流形的同调等价,我们使用 Geoghegan 和 Nicas 的构造来定义它在\pi_1^{st}(\mathcal{L} N, N)$ 中的 Reidemeister trace$[T] \。我们将戈尔斯基-邢斯顿共乘实现为谱的映射,并证明了$f$不能缠绕谱共乘的情况可以用查斯-沙利文与$[T]$相乘来描述。特别是,当 $f$ 是简单同调等价时,$M$ 和 $N$ 的谱共乘会一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信