On entropy and complexity of coherent states

Koushik Ray
{"title":"On entropy and complexity of coherent states","authors":"Koushik Ray","doi":"arxiv-2407.13327","DOIUrl":null,"url":null,"abstract":"Consanguinity of entropy and complexity is pointed out through the example of\ncoherent states of the $SL(2,\\C)$ group. Both are obtained from the K\\\"ahler\npotential of the underlying geometry of the sphere corresponding to the\nFubini-Study metric. Entropy is shown to be equal to the K\\\"ahler potential\nwritten in terms of dual symplectic variables as the Guillemin potential for\ntoric manifolds. The logarithm of complexity relating two states is shown to be\nequal to Calabi's diastasis function. Optimality of the Fubini-Study metric is\nindicated by considering its deformation.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consanguinity of entropy and complexity is pointed out through the example of coherent states of the $SL(2,\C)$ group. Both are obtained from the K\"ahler potential of the underlying geometry of the sphere corresponding to the Fubini-Study metric. Entropy is shown to be equal to the K\"ahler potential written in terms of dual symplectic variables as the Guillemin potential for toric manifolds. The logarithm of complexity relating two states is shown to be equal to Calabi's diastasis function. Optimality of the Fubini-Study metric is indicated by considering its deformation.
关于相干态的熵和复杂性
通过$SL(2,\C)$组的相干态的例子指出了熵和复杂性的一致性。二者都是从与富比尼研究度量相对应的球体底层几何的 K\"ahler 势中得到的。熵被证明等同于用对偶交映变量写成的圭勒曼势流形的 K\"ahler 势。与两个状态相关的复杂度对数被证明等同于卡拉比的失衡函数。通过考虑其变形,证明了 Fubini-Study 度量的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信