Maximum-Norm a Posteriori Error Bounds for an Extrapolated Upwind Scheme Applied to a Singularly Perturbed Convection-Diffusion Problem

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Torsten Linß, Goran Radojev
{"title":"Maximum-Norm a Posteriori Error Bounds for an Extrapolated Upwind Scheme Applied to a Singularly Perturbed Convection-Diffusion Problem","authors":"Torsten Linß, Goran Radojev","doi":"10.1007/s00009-024-02698-x","DOIUrl":null,"url":null,"abstract":"<p>Richardson extrapolation is applied to a simple first-order upwind difference scheme for the approximation of solutions of singularly perturbed convection-diffusion problems in one dimension. Robust <i>a posteriori</i> error bounds are derived for the proposed method on arbitrary meshes. It is shown that the resulting error estimator can be used to steer an adaptive mesh algorithm that generates meshes resolving layers and singularities. Numerical results are presented that illustrate the theoretical findings.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02698-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Richardson extrapolation is applied to a simple first-order upwind difference scheme for the approximation of solutions of singularly perturbed convection-diffusion problems in one dimension. Robust a posteriori error bounds are derived for the proposed method on arbitrary meshes. It is shown that the resulting error estimator can be used to steer an adaptive mesh algorithm that generates meshes resolving layers and singularities. Numerical results are presented that illustrate the theoretical findings.

应用于奇异扰动对流扩散问题的外推上风方案的最大正态后验误差边界
理查德森外推法被应用于一个简单的一阶上风差分方案,用于逼近一维奇异扰动对流扩散问题的解。在任意网格上,为所提出的方法导出了稳健的后验误差边界。结果表明,由此得出的误差估计值可用于指导自适应网格算法,生成解决层和奇异性的网格。文中给出的数值结果说明了理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信