Speech Imagery Decoding Using EEG Signals and Deep Learning: A Survey

IF 4.9 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Liying Zhang;Yueying Zhou;Peiliang Gong;Daoqiang Zhang
{"title":"Speech Imagery Decoding Using EEG Signals and Deep Learning: A Survey","authors":"Liying Zhang;Yueying Zhou;Peiliang Gong;Daoqiang Zhang","doi":"10.1109/TCDS.2024.3431224","DOIUrl":null,"url":null,"abstract":"Speech imagery (SI)-based brain–computer interface (BCI) using electroencephalogram (EEG) signal is a promising area of research for individuals with severe speech production disorders. Recent advances in deep learning (DL) have led to significant improvements in this domain. However, there is a lack of comprehensive review that covers the application of DL methods for decoding imagined speech via EEG. In this article, we survey SI and DL literature to address critical questions regarding preferred paradigms, preprocessing necessity, optimal input formulations, and current trends in DL-based techniques. Specifically, we first search major databases across science and engineering disciplines for relevant studies. Then, we analyze the DL-based techniques applied in SI decoding from five main perspectives: dataset, preprocessing, input formulation, DL architecture, and performance evaluation. Moreover, we summarize the key findings of this work and propose a set of practical recommendations. Finally, we highlight the practical challenges of DL-based imagined speech decoding and suggest future research directions.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"17 1","pages":"22-39"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605127/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Speech imagery (SI)-based brain–computer interface (BCI) using electroencephalogram (EEG) signal is a promising area of research for individuals with severe speech production disorders. Recent advances in deep learning (DL) have led to significant improvements in this domain. However, there is a lack of comprehensive review that covers the application of DL methods for decoding imagined speech via EEG. In this article, we survey SI and DL literature to address critical questions regarding preferred paradigms, preprocessing necessity, optimal input formulations, and current trends in DL-based techniques. Specifically, we first search major databases across science and engineering disciplines for relevant studies. Then, we analyze the DL-based techniques applied in SI decoding from five main perspectives: dataset, preprocessing, input formulation, DL architecture, and performance evaluation. Moreover, we summarize the key findings of this work and propose a set of practical recommendations. Finally, we highlight the practical challenges of DL-based imagined speech decoding and suggest future research directions.
利用脑电信号和深度学习进行语音图像解码:调查
基于脑电(EEG)信号的脑机接口(BCI)是重度言语产生障碍患者的一个有前途的研究领域。深度学习(DL)的最新进展导致了该领域的重大改进。然而,缺乏全面的综述,涵盖了深度学习方法的应用,解码想象语音通过脑电图。在本文中,我们调查了SI和DL文献,以解决有关首选范例、预处理必要性、最佳输入公式和基于DL技术的当前趋势的关键问题。具体来说,我们首先在科学和工程学科的主要数据库中搜索相关研究。然后,我们从数据集、预处理、输入公式、深度学习架构和性能评估五个主要角度分析了基于深度学习的技术在SI解码中的应用。此外,我们总结了这项工作的主要发现,并提出了一套实用的建议。最后,我们强调了基于dl的想象语音解码的实际挑战,并提出了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
10.00%
发文量
170
期刊介绍: The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信