{"title":"Bird nest-like shape of polypyrrole-iodide/iodine complex nanocomposite with highly optical and morphological behavior for green hydrogen generation","authors":"Mohamed Rabia, Eman Aldosari, Mahmoud Moussa","doi":"10.1007/s12648-024-03353-7","DOIUrl":null,"url":null,"abstract":"<p>A novel bird nest-like structured complex nanocomposite, known as polypyrrole-iodide/iodine (Ppy-I/I<sub>2</sub>), has been successfully synthesized using a one-pot oxidation reaction involving pyrrole and iodine materials. This complex nanocomposite exhibits highly promising characteristics both in terms of morphology and optics properties. The distinctive morphological features of the Ppy-I/I<sub>2</sub> complex nanocomposite are particularly noteworthy. Its bird nest-like structure consists of particles with well-defined cavities inside and small particles adorning the exterior surfaces. The distinctive morphology significantly improves the active sites and acts as an efficient photon trap, enhancing its exceptional optical properties. The bandgap of this composite measures 2.45 eV, which is a significant advantage for a polymer-based complex composite. This bandgap value makes it particularly applicable, especially in the realm of optoelectronics and photoelectrochemical processes. One of the standout applications for this complex nanocomposite is its use as a photocathode for the H<sub>2</sub> generation using the Red Sea water. Under various light conditions: white light and specific photon wavelengths, the photocathode demonstrates its efficiency. The current density (J<sub>ph</sub>) values obtained are highly indicative of its performance, reaches − 0.8 mA cm<sup>−2</sup> under white light. Moreover, at temperatures 30–50 °C, the J<sub>ph</sub> values show a notable improvement, rising from − 0.8 to − 0.89 mA cm<sup>−2</sup>, which highlights the photocathode's versatility and potential for enhanced hydrogen generation.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03353-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel bird nest-like structured complex nanocomposite, known as polypyrrole-iodide/iodine (Ppy-I/I2), has been successfully synthesized using a one-pot oxidation reaction involving pyrrole and iodine materials. This complex nanocomposite exhibits highly promising characteristics both in terms of morphology and optics properties. The distinctive morphological features of the Ppy-I/I2 complex nanocomposite are particularly noteworthy. Its bird nest-like structure consists of particles with well-defined cavities inside and small particles adorning the exterior surfaces. The distinctive morphology significantly improves the active sites and acts as an efficient photon trap, enhancing its exceptional optical properties. The bandgap of this composite measures 2.45 eV, which is a significant advantage for a polymer-based complex composite. This bandgap value makes it particularly applicable, especially in the realm of optoelectronics and photoelectrochemical processes. One of the standout applications for this complex nanocomposite is its use as a photocathode for the H2 generation using the Red Sea water. Under various light conditions: white light and specific photon wavelengths, the photocathode demonstrates its efficiency. The current density (Jph) values obtained are highly indicative of its performance, reaches − 0.8 mA cm−2 under white light. Moreover, at temperatures 30–50 °C, the Jph values show a notable improvement, rising from − 0.8 to − 0.89 mA cm−2, which highlights the photocathode's versatility and potential for enhanced hydrogen generation.
期刊介绍:
Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.