Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth in Random Environment

N. V. Antonov, A. A. Babakin, N. M. Gulitskiy, P. I. Kakin
{"title":"Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth in Random Environment","authors":"N. V. Antonov, A. A. Babakin, N. M. Gulitskiy, P. I. Kakin","doi":"arxiv-2407.13783","DOIUrl":null,"url":null,"abstract":"The influence of a random environment on the dynamics of a fluctuating rough\nsurface is investigated using a field theoretic renormalization group. The\nenvironment motion is modelled by the stochastic Navier--Stokes equation, which\nincludes both a fluid in thermal equilibrium and a turbulent fluid. The surface\nis described by the generalized Pavlik's stochastic equation. As a result of\nfulfilling the renormalizability requirement, the model necessarily involves an\ninfinite number of coupling constants. The one-loop counterterm is derived in\nan explicit closed form. The corresponding renormalization group equations\ndemonstrate the existence of three two-dimensional surfaces of fixed points in\nthe infinite-dimensional parameter space. If the surfaces contain IR attractive\nregions, the problem allows for the large-scale, long-time scaling behaviour.\nFor the first surface (advection is irrelevant) the critical dimensions of the\nheight field $\\Delta_{h}$, the response field $\\Delta_{h'}$ and the frequency\n$\\Delta_{\\omega}$ are non-universal through the dependence on the effective\ncouplings. For the other two surfaces (advection is relevant) the dimensions\nare universal and they are found exactly.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of a random environment on the dynamics of a fluctuating rough surface is investigated using a field theoretic renormalization group. The environment motion is modelled by the stochastic Navier--Stokes equation, which includes both a fluid in thermal equilibrium and a turbulent fluid. The surface is described by the generalized Pavlik's stochastic equation. As a result of fulfilling the renormalizability requirement, the model necessarily involves an infinite number of coupling constants. The one-loop counterterm is derived in an explicit closed form. The corresponding renormalization group equations demonstrate the existence of three two-dimensional surfaces of fixed points in the infinite-dimensional parameter space. If the surfaces contain IR attractive regions, the problem allows for the large-scale, long-time scaling behaviour. For the first surface (advection is irrelevant) the critical dimensions of the height field $\Delta_{h}$, the response field $\Delta_{h'}$ and the frequency $\Delta_{\omega}$ are non-universal through the dependence on the effective couplings. For the other two surfaces (advection is relevant) the dimensions are universal and they are found exactly.
随机环境中随机表面生长的无限维模型中的场论重正化群
本文利用场论重正化群研究了随机环境对波动粗糙表面动力学的影响。环境运动由随机纳维-斯托克斯方程模拟,其中包括热平衡流体和湍流流体。表面由广义帕夫利克随机方程描述。由于要满足重正化要求,该模型必然涉及无限多个耦合常数。一环反常项是以明确的封闭形式推导出来的。相应的重正化群方程证明了在无限维参数空间中存在三个二维定点表面。对于第一个曲面(平流无关),高度场$\Delta_{h}$、响应场$\Delta_{h'}$和频率$\Delta_{\omega}$的临界维数通过对有效耦合的依赖而是非通用的。对于其他两个表面(与平流有关),维数是通用的,而且可以精确地找到它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信